Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions PhysicsTools/NanoAOD/python/jetsAK4_CHS_cff.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,6 +350,64 @@ def nanoAOD_addDeepInfoAK4CHS(process,addDeepBTag,addDeepFlavour):
## DeepInfoAK4CHS:End
#################################################

# ML-based FastSim refinement
from Configuration.Eras.Modifier_fastSim_cff import fastSim
def nanoAOD_refineFastSim_bTagDeepFlav(process):

fastSim.toModify( process.jetTable.variables,
btagDeepFlavBunrefined = process.jetTable.variables.btagDeepFlavB.clone(),
btagDeepFlavCvBunrefined = process.jetTable.variables.btagDeepFlavCvB.clone(),
btagDeepFlavCvLunrefined = process.jetTable.variables.btagDeepFlavCvL.clone(),
btagDeepFlavQGunrefined = process.jetTable.variables.btagDeepFlavQG.clone(),
)

fastSim.toModify( process.jetTable.variables,
btagDeepFlavB = None,
btagDeepFlavCvB = None,
btagDeepFlavCvL = None,
btagDeepFlavQG = None,
)

fastSim.toModify( process.jetTable.externalVariables,
btagDeepFlavB = ExtVar(cms.InputTag("btagDeepFlavRefineNN:btagDeepFlavBrefined"), float, doc="DeepJet b+bb+lepb tag discriminator", precision=10),
btagDeepFlavCvB = ExtVar(cms.InputTag("btagDeepFlavRefineNN:btagDeepFlavCvBrefined"), float, doc="DeepJet c vs b+bb+lepb discriminator", precision=10),
btagDeepFlavCvL = ExtVar(cms.InputTag("btagDeepFlavRefineNN:btagDeepFlavCvLrefined"), float, doc="DeepJet c vs uds+g discriminator", precision=10),
btagDeepFlavQG = ExtVar(cms.InputTag("btagDeepFlavRefineNN:btagDeepFlavQGrefined"), float, doc="DeepJet g vs uds discriminator", precision=10),
)

process.btagDeepFlavRefineNN= cms.EDProducer("JetBaseMVAValueMapProducer",
backend = cms.string("ONNX"),
batch_eval = cms.bool(True),
disableONNXGraphOpt = cms.bool(True),

src = cms.InputTag("linkedObjects","jets"),

weightFile=cms.FileInPath("PhysicsTools/NanoAOD/data/btagDeepFlavRefineNN_CHS.onnx"),
name = cms.string("btagDeepFlavRefineNN"),

isClassifier = cms.bool(False),
variablesOrder = cms.vstring(["GenJet_pt","GenJet_eta","Jet_hadronFlavour",
"Jet_btagDeepFlavB","Jet_btagDeepFlavCvB","Jet_btagDeepFlavCvL","Jet_btagDeepFlavQG"]),
variables = cms.PSet(
GenJet_pt = cms.string("?genJetFwdRef().backRef().isNonnull()?genJetFwdRef().backRef().pt():pt"),
GenJet_eta = cms.string("?genJetFwdRef().backRef().isNonnull()?genJetFwdRef().backRef().eta():eta"),
Jet_hadronFlavour = cms.string("hadronFlavour()"),
Jet_btagDeepFlavB = cms.string("bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb')"),
Jet_btagDeepFlavCvB = cms.string("?(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb'))>0?bDiscriminator('pfDeepFlavourJetTags:probc')/(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb')):-1"),
Jet_btagDeepFlavCvL = cms.string("?(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probuds')+bDiscriminator('pfDeepFlavourJetTags:probg'))>0?bDiscriminator('pfDeepFlavourJetTags:probc')/(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probuds')+bDiscriminator('pfDeepFlavourJetTags:probg')):-1"),
Jet_btagDeepFlavQG = cms.string("?(bDiscriminator('pfDeepFlavourJetTags:probg')+bDiscriminator('pfDeepFlavourJetTags:probuds'))>0?bDiscriminator('pfDeepFlavourJetTags:probg')/(bDiscriminator('pfDeepFlavourJetTags:probg')+bDiscriminator('pfDeepFlavourJetTags:probuds')):-1"),
),
inputTensorName = cms.string("input"),
outputTensorName = cms.string("output"),
outputNames = cms.vstring(["btagDeepFlavBrefined","btagDeepFlavCvBrefined","btagDeepFlavCvLrefined","btagDeepFlavQGrefined"]),
outputFormulas = cms.vstring(["at(0)","at(1)","at(2)","at(3)"]),
)

fastSim.toModify(process.jetTablesTask, process.jetTablesTask.add(process.btagDeepFlavRefineNN))

return process


################################################################################
# JETS FOR MET type1
################################################################################
Expand Down
15 changes: 12 additions & 3 deletions PhysicsTools/PatAlgos/interface/BaseMVAValueMapProducer.h
Original file line number Diff line number Diff line change
Expand Up @@ -55,12 +55,19 @@

class BaseMVACache {
public:
BaseMVACache(const std::string& model_path, const std::string& backend) {
BaseMVACache(const std::string& model_path, const std::string& backend, const bool disableONNXGraphOpt) {
if (backend == "TF") {
graph_.reset(tensorflow::loadGraphDef(model_path));
tf_session_ = tensorflow::createSession(graph_.get());
} else if (backend == "ONNX") {
ort_ = std::make_unique<cms::Ort::ONNXRuntime>(model_path);
if (disableONNXGraphOpt) {
Ort::SessionOptions sess_opts;
sess_opts = cms::Ort::ONNXRuntime::defaultSessionOptions();
sess_opts.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_DISABLE_ALL);
ort_ = std::make_unique<cms::Ort::ONNXRuntime>(model_path, &sess_opts);
} else {
ort_ = std::make_unique<cms::Ort::ONNXRuntime>(model_path);
}
}
}
~BaseMVACache() { tensorflow::closeSession(tf_session_); }
Expand Down Expand Up @@ -270,7 +277,8 @@ void BaseMVAValueMapProducer<T>::produce(edm::Event& iEvent, const edm::EventSet
template <typename T>
std::unique_ptr<BaseMVACache> BaseMVAValueMapProducer<T>::initializeGlobalCache(const edm::ParameterSet& cfg) {
return std::make_unique<BaseMVACache>(cfg.getParameter<edm::FileInPath>("weightFile").fullPath(),
cfg.getParameter<std::string>("backend"));
cfg.getParameter<std::string>("backend"),
cfg.getParameter<bool>("disableONNXGraphOpt"));
}

template <typename T>
Expand All @@ -295,6 +303,7 @@ edm::ParameterSetDescription BaseMVAValueMapProducer<T>::getDescription() {
desc.add<std::vector<std::string>>("outputFormulas", std::vector<std::string>())
->setComment("Formulas to be used to post process the output");
desc.add<bool>("batch_eval", false)->setComment("Run inference in batch instead of per-object");
desc.add<bool>("disableONNXGraphOpt", false)->setComment("Disable ONNX runtime graph optimization");

return desc;
}
Expand Down