-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspelling_old.py
455 lines (342 loc) · 15.7 KB
/
spelling_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# -*- coding: utf-8 -*-
from __future__ import print_function
# ignore some Keras warnings regarding deprecations and model saving
import warnings
warnings.filterwarnings('ignore')
from keras.models import Model, load_model, Sequential
from keras.layers import Input, LSTM, Dense, RepeatVector, \
TimeDistributed, Activation, GRU, Dropout,\
Bidirectional, Convolution1D, Dot,\
Concatenate
import pickle
from helpers import *
import importlib
from importlib import reload
from scipy.stats import hmean
class MyModel:
BATCH_SIZE = 512
def __init__(self, max_encoder_seq_length=25, latent_dim = 128):
self.max_encoder_seq_length = max_encoder_seq_length
self.max_decoder_seq_length = max_encoder_seq_length + 4
self.token_index = token_index
self.latent_dim = 128
def init_from_texts(self, texts):
self.token_index = token_index(texts + ['\t','\n'])
def vectorize_batch(self, texts, seq_len, offset=False, dtype='int'):
num_tokens = len(self.token_index)
example_count = len(texts)
start_t = 1 if offset else 0
# Generate 1-hot encoding
data = np.zeros((example_count, seq_len, num_tokens),
dtype=dtype)
for i, text in enumerate(texts):
for t, char in enumerate(text[start_t:]):
idx = self.token_index[char]
data[i, t, idx] = 1.
return data
def encoder_batch(self, texts):
return self.vectorize_batch(texts, self.max_encoder_seq_length)
def decoder_batch(self, texts, offset=False):
return self.vectorize_batch(texts, self.max_decoder_seq_length, offset)
def create_model(self):
num_tokens = len(self.token_index)
# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_tokens),
name='encoder_inputs')
encoder = LSTM(self.latent_dim, return_state=True, name='encoder',
dropout=.05)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_tokens), name='decoder_inputs')
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(self.latent_dim, return_sequences=True,
return_state=True, name='decoder_lstm',
dropout=.05)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_tokens, activation='softmax',
name='decoder_dense')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states
# Define sampling models
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(self.latent_dim,),
name='decoder_input_h')
decoder_state_input_c = Input(shape=(self.latent_dim,),
name='decoder_input_c')
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states
)
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
self.model = model
self.encoder_model = encoder_model
self.decoder_model = decoder_model
def train(self, texts, epochs=1):
target_texts = wrap_with_delims(texts)
encoder_input_data = self.encoder_batch(texts)
decoder_input_data = self.decoder_batch(target_texts)
# same as decoder input data, but offset by one
decoder_output_data = self.decoder_batch(target_texts, True)
X = [encoder_input_data, decoder_input_data]
Y = decoder_output_data
self.model.fit(X, Y, epochs=epochs, batch_size=self.BATCH_SIZE)
mm = MyModel(3, 128)
mm.init_from_texts(['a','b'])
print("input")
print(mm.encoder_batch(['aaa','bbb']))
print("output")
print(mm.decoder_batch(['aaa','bbb'], True))
mm.create_model()
mm.train(['aaa', 'bbb'])
num_samples = 20_000 # Number of samples to train on.
# Path to the datatxt file on disk.
data_path = 'data/sentences.txt'
max_texts_len = 25
all_texts = load_preprocessed(data_path, max_texts_len)
input_texts = all_texts[:num_samples]
mm = MyModel(max_texts_len, 128)
mm.init_from_texts(input_texts)
mm.create_model()
mm.train(input_texts, 50)
exit()
test_phrases = all_phrases[-100:]
print('All phrases in dataset: ', len(all_phrases))
print('Training phrases: ', len(input_phrases))
print('Test phrases: ', len(test_phrases))
print("\n * ".join(['Examples:'] + all_phrases[:10]))
# create doken indices out of all phrases
input_token_index = token_index(all_phrases)
num_encoder_tokens = len(input_token_index)
target_token_index = {'\t': num_encoder_tokens,
'\n': num_encoder_tokens+1,
**input_token_index}
num_decoder_tokens = len(target_token_index)
# Keep the count of all the possible input characters
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
def vectorize_batch(texts, token_index, max_seq_len, offset=False):
num_tokens = len(token_index)
example_count = len(texts)
# Generate 1-hot encoding
data = np.zeros((example_count, max_seq_len, num_tokens), dtype='float')
for i, text in enumerate(texts):
start_t = 1 if offset else 0
for t, char in enumerate(text[start_t:]):
idx = token_index[char]
data[i, t, idx] = 1.
return data
def models(num_encoder_tokens, num_decoder_tokens, latent_dim):
# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_encoder_tokens),
name='encoder_inputs')
encoder = LSTM(latent_dim, return_state=True, name='encoder',
dropout=.05)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens), name='decoder_inputs')
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True,
name='decoder_lstm', dropout=.05)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax',
name='decoder_dense')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states
# Define sampling models
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,), name='decoder_input_h')
decoder_state_input_c = Input(shape=(latent_dim,), name='decoder_input_c')
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states
)
return model, encoder_model, decoder_model
def cnn_attention_model(num_encoder_tokens, num_decoder_tokens, latent_dim):
encoder_inputs = Input(shape=(None, num_encoder_tokens))
# Encoder
x_encoder = Convolution1D(256, kernel_size=3, activation='relu',
padding='causal')(encoder_inputs)
x_encoder = Convolution1D(256, kernel_size=3, activation='relu',
padding='causal', dilation_rate=2)(x_encoder)
x_encoder = Convolution1D(256, kernel_size=3, activation='relu',
padding='causal', dilation_rate=4)(x_encoder)
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# Decoder
x_decoder = Convolution1D(256, kernel_size=3, activation='relu',
padding='causal')(decoder_inputs)
x_decoder = Convolution1D(256, kernel_size=3, activation='relu',
padding='causal', dilation_rate=2)(x_decoder)
x_decoder = Convolution1D(256, kernel_size=3, activation='relu',
padding='causal', dilation_rate=4)(x_decoder)
# Attention
attention = Dot(axes=[2, 2])([x_decoder, x_encoder])
attention = Activation('softmax')(attention)
context = Dot(axes=[2, 1])([attention, x_encoder])
decoder_combined_context = Concatenate(axis=-1)([context, x_decoder])
decoder_combined_context = Dropout(.03)(decoder_combined_context)
decoder_outputs = Convolution1D(64, kernel_size=3, activation='relu',
padding='causal')(decoder_combined_context)
decoder_outputs = Convolution1D(64, kernel_size=3, activation='relu',
padding='causal')(decoder_outputs)
# Output
decoder_dense = TimeDistributed(
Dense(num_decoder_tokens, activation='softmax')
)
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.summary()
# Run training
model.compile(optimizer='adam', loss='categorical_crossentropy')
return model
model, encoder_model, decoder_model = models(num_encoder_tokens, num_decoder_tokens, latent_dim)
#model = test_attention_model(num_encoder_tokens, num_decoder_tokens, -1)
model.compile(optimizer=optimizer, loss=loss_fn, metrics=['accuracy'])
def evaluate_correct(texts, corrector):
errors = 0.0
for t in texts:
if t != corrector(t): errors += 1
return errors / len(texts)
def evaluate_misspelled(texts, corrector):
errors = 0.0
for t in texts:
errored = add_noise_to_string(t, 0.05)
if t != corrector(errored): errors += 1
return errors / len(texts)
model.compile(optimizer=optimizer, loss=loss_fn, metrics=['accuracy'])
texts = input_phrases[:1_000]
target_texts = wrap_with_delims(texts)
encoder_input_data = vectorize_batch(
texts, input_token_index,
max_encoder_seq_length
)
decoder_input_data = vectorize_batch(
wrap_with_delims(texts), target_token_index,
max_decoder_seq_length
)
# same as decoder input data, but offset by one
decoder_output_data = vectorize_batch(
target_texts, target_token_index,
max_decoder_seq_length, True
)
X = [encoder_input_data, decoder_input_data]
Y = decoder_output_data
model.fit(X, Y, batch_size=batch_size)
#exit()
import gc
loss, val, val_acc = [], [], []
# for epoch in range(60):
# print("(Real) Epoch: %s" % epoch)
# # Initialize the generator
# gen = training_generator()
# l, v, va = [], [], []
# i = 0
# for X, Y in gen:
# h = model.fit(X, Y,
# batch_size=batch_size,epochs=1, validation_split=0.1, verbose=1)
# l.append(h.history['loss'][0])
# v.append(h.history['val_loss'][0])
# va.append(h.history['val_accuracy'][0])
# del(gen)
# gc.collect()
# loss.append(hmean(l))
# val.append(hmean(v))
# val_acc.append(hmean(va))
# print('loss:',hmean(l), 'val loss:', hmean(v), 'val acc:', hmean(va))
#print('running eval')
#test_err = evaluate_misspelled(test_phrases[:100], corrector)
#print('Test Error:', test_err)
#test.append(hmean(t))
corrector = translate_fn(encoder_model, decoder_model,
input_token_index, target_token_index,
max_encoder_seq_length)
evaluate_misspelled(test_phrases[:1000], corrector)
er_phrases = [add_noise_to_string(p, .05) for p in test_phrases[10:25]]
[(p , corrector(p)) for p in er_phrases]
[(corrector(p)) for p in ['cal me please', 'sotp it!', "helo i'm herre", 'is ths onn?'] ]
model.save('/drive/My Drive/ML/custom_functional_train.h5')
encoder_model.save('/drive/My Drive/ML/custom_functional_encoder.h5')
decoder_model.save('/drive/My Drive/ML/custom_functional_decoder.h5')
plt.plot(loss)
plt.plot(val)
plt.plot(test)
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation', 'test'], loc='upper left')
plt.show()
test[-3:]
evaluate_correct(input_phrases[:1000], corrector)
evaluate_correct(input_phrases[-1000:], corrector)
evaluate_misspelled(input_phrases[:1000], corrector)
evaluate_correct(test_phrases[:1000], corrector)
evaluate_misspelled(test_phrases[:1000], corrector)
def evaluate_vect(input_texts, target_texts, model, training_vectorizer):
target_texts = wrap_with_delims(target_texts)
#wrapped_target_texts = wrap_with_delims(target_texts)
X, Y = training_vectorizer(input_texts, target_texts)
loss = model.evaluate(X, Y)
print('\nTesting loss: ', loss)
misspelled = [add_noise_to_string(p, .05) for p in test_phrases[:1000]]
evaluate_vect(misspelled, test_phrases[:1000],
model, training_vectorizer)
# find max encoder seq legth
#max_encoder_seq_length = encoder_model.get_layer('encoder_inputs').input_shape[-1]
phrases = ['fire', 'stp', 'comein', 'get ot', 'i cant go','im sorry',
'h is busi', 'hes drunk', 'ill be lat', 'hold mi beer', 'pus the buton',
'coll me on my phone', 'helo boys and girls']
[corrector(phrase) for phrase in phrases]
def save():
"""quick-n-dirty helper for saving models"""
print("Saving model")
model.save('training.h5')
encoder_model.save('encoder.h5')
decoder_model.save('decoder.h5')
model_metadata = { 'input_token_index': input_token_index,
'target_token_index': target_token_index,
'max_encoder_seq_length': max_encoder_seq_length }
with open('model_metadata.pickle', 'wb') as f:
pickle.dump(model_metadata, f)
save()