-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_ed_model.py
239 lines (185 loc) · 7.75 KB
/
simple_ed_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from s2s_model import S2SModel
from spelling_model import SpellingModel
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import (
LSTM,
Bidirectional,
RepeatVector,
Input,
TimeDistributed,
Dense,
Attention,
Activation,
concatenate,
dot,
Conv1D,
Reshape,
Embedding,
Layer,
Dropout
)
import tensorflow as tf
from multi_head_attention import MultiHeadAttention
from tensorflow.keras import backend as K
import numpy as np
class SEDModel(S2SModel):
BATCH_SIZE = 250
def create_model(self):
output_len = self.max_seq_length
layers = [
self.one_hot_layer(),
Bidirectional(
LSTM(self.latent_dim, return_sequences=False),
input_shape=(output_len, self.token_count),
),
RepeatVector(output_len),
Bidirectional(LSTM(self.latent_dim, return_sequences=True)),
self.output_layer()
]
self.model = Sequential(layers)
self.compile_model()
class SEDSpellingModel(SEDModel, SpellingModel):
pass
class BahdanauAttention(Layer):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = Dense(units)
self.W2 = Dense(units)
self.V = Dense(1)
def call(self, query, values):
# query hidden state shape == (batch_size, hidden size)
# query_with_time_axis shape == (batch_size, 1, hidden size)
# values shape == (batch_size, max_len, hidden size)
# we are doing this to broadcast addition along the time axis to calculate the score
query_with_time_axis = tf.expand_dims(query, 1)
# score shape == (batch_size, max_length, 1)
# we get 1 at the last axis because we are applying score to self.V
# the shape of the tensor before applying self.V is (batch_size, max_length, units)
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
class SEDAModel(S2SModel):
def create_model(self):
output_len = self.max_seq_length
encoder_input = Input(shape=(self.max_seq_length), dtype='int32')
one_hot_emb = self.one_hot_layer()
lstm_input = one_hot_emb(encoder_input)
encoder = Bidirectional(
LSTM(self.latent_dim, return_sequences=True),
input_shape=(output_len, self.token_count),
)
# Due to `return_sequences` the encoder outputs are of shape
# (X, sequence_length, 2 x LSTM hidden dim).
# we only need the last timestep for our decoder input
encoder_output = encoder(lstm_input)
encoder_last = encoder_output[:,-1,:]
repeated = RepeatVector(output_len)(encoder_last)
decoder = Bidirectional(LSTM(self.latent_dim, return_sequences=True))
decoder_output = decoder(repeated)
# custom attention
#attention = dot([decoder_output, encoder_output], axes=[2, 2])
#attention = Activation('softmax', name='attention')(attention)
#context = dot([attention, encoder_output], axes=[2,1])
#decoder_combined_context = concatenate([context, decoder_output])
attention = Attention()
decoder_combined_context = attention([decoder_output, encoder_output])
#decoder_combined_context = concatenate([context, decoder_output])
td_dense = TimeDistributed(
Dense(self.latent_dim, activation='tanh')
)
output_1 = td_dense(decoder_combined_context)
output = self.output_layer()(output_1)
self.model = Model(inputs=encoder_input, outputs=output)
self.compile_model()
class SEDASpellingModel(SEDAModel, SpellingModel):
pass
class SEDSpellingModel(SEDModel, SpellingModel):
pass
class CSEDAModel(S2SModel):
# https://blog.codecentric.de/en/2019/07/move-n-gram-extraction-into-your-keras-model/
def ngram_block(self, n):
alphabet_size = self.token_count
def wrapped(inputs):
layer = Conv1D(1, n, use_bias=False, trainable=False)
x = Reshape((-1, 1))(inputs)
x = layer(x)
kernel = np.power(alphabet_size, range(0, n),
dtype=K.floatx())
layer.set_weights([kernel.reshape(n, 1, 1)])
return Reshape((-1,))(x)
return wrapped
def create_model(self):
output_len = self.max_seq_length
inputt = Input(shape=(self.max_seq_length), dtype='float32')
n = 2
ngrams = self.ngram_block(n)(inputt)
embedded = Embedding(pow(self.token_count, n), 100)(ngrams)
encoder = Bidirectional(
LSTM(self.latent_dim, return_sequences=True),
input_shape=(output_len, self.token_count),
)
# Due to `return_sequences` the encoder outputs are of shape
# (X, sequence_length, 2 x LSTM hidden dim).
# we only need the last timestep for our decoder input
encoder_output = encoder(embedded)
encoder_last = encoder_output[:,-1,:]
repeated = RepeatVector(output_len)(encoder_last)
decoder_output = Bidirectional(
LSTM(self.latent_dim, return_sequences=True)
)(repeated)
# custom attention
attention = dot([decoder_output, encoder_output], axes=[2, 2])
attention = Activation('softmax', name='attention')(attention)
context = dot([attention, encoder_output], axes=[2,1])
decoder_combined_context = concatenate([context, decoder_output])
td_dense = TimeDistributed(
Dense(self.latent_dim, activation='tanh')
)
output_1 = td_dense(decoder_combined_context)
output = self.output_layer()(output_1)
self.model = Model(inputs=inputt, outputs=output)
self.compile_model()
class CSEDASpellingModel(CSEDAModel, SpellingModel):
pass
class ECCNNModel(S2SModel):
def create_model(self):
output_len = self.max_seq_length
inputt = Input(shape=(self.max_seq_length), dtype='int32')
emb = self.one_hot_layer()
emb.trainable = True
embedded = emb(inputt)
conv2 = Conv1D(
self.latent_dim, kernel_size=2, activation='tanh', padding='same'#,dilation_rate=2
)(embedded)
lstm_input = concatenate([embedded, conv2])
encoder_output = Bidirectional(
LSTM(self.latent_dim, return_sequences=True),
input_shape=(output_len, self.token_count),
)(lstm_input)
# Due to `return_sequences` the encoder outputs are of shape
# (X, sequence_length, 2 x LSTM hidden dim).
# we only need the last timestep for our decoder input
encoder_last = encoder_output[:,-1,:]
repeated = RepeatVector(output_len)(encoder_last)
decoder_output = Bidirectional(
LSTM(self.latent_dim, return_sequences=True)
)(repeated)
# custom attention
attention = dot([decoder_output, encoder_output], axes=[2, 2])
attention = Activation('softmax', name='attention')(attention)
context = dot([attention, encoder_output], axes=[2,1])
decoder_combined_context = concatenate([context, decoder_output])
td_dense = TimeDistributed(
Dense(self.latent_dim, activation='tanh')
)
output_1 = td_dense(decoder_combined_context)
output = self.output_layer()(output_1)
self.model = Model(inputs=inputt, outputs=output)
self.compile_model()
class ECCNNSpellingModel(ECCNNModel, SpellingModel ):
pass