-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths2s_transformer_model.py
151 lines (129 loc) · 5.94 KB
/
s2s_transformer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from math import ceil
import tensorflow as tf
import keras
from helpers import *
from sklearn.model_selection import train_test_split
from keras import layers
from keras.models import Model, load_model, Sequential
from keras.layers import Input, LSTM, Dense, RepeatVector, \
TimeDistributed, Activation, GRU, Dropout, Bidirectional, \
Embedding, Lambda, Layer
import keras.backend as K
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.preprocessing.sequence import pad_sequences
from keras.metrics import sparse_categorical_accuracy
from s2s_model import *
from spelling_model import SpellingModel
# https://www.kaggle.com/fareise/multi-head-self-attention-for-text-classification
class MultiHeadSelfAttention(Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError(
f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
)
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
# x.shape = [batch_size, seq_len, embedding_dim]
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs) # (batch_size, seq_len, embed_dim)
key = self.key_dense(inputs) # (batch_size, seq_len, embed_dim)
value = self.value_dense(inputs) # (batch_size, seq_len, embed_dim)
query = self.separate_heads(
query, batch_size
) # (batch_size, num_heads, seq_len, projection_dim)
key = self.separate_heads(
key, batch_size
) # (batch_size, num_heads, seq_len, projection_dim)
value = self.separate_heads(
value, batch_size
) # (batch_size, num_heads, seq_len, projection_dim)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(
attention, perm=[0, 2, 1, 3]
) # (batch_size, seq_len, num_heads, projection_dim)
concat_attention = tf.reshape(
attention, (batch_size, -1, self.embed_dim)
) # (batch_size, seq_len, embed_dim)
output = self.combine_heads(
concat_attention
) # (batch_size, seq_len, embed_dim)
return output
class TransformerBlock(Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(TransformerBlock, self).__init__()
self.att = MultiHeadSelfAttention(embed_dim, num_heads)
self.ffn = keras.Sequential(
[layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
class TokenAndPositionEmbedding(Layer):
def __init__(self, maxlen, vocab_size, embed_dim):
super(TokenAndPositionEmbedding, self).__init__()
#self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.token_emb = Lambda(lambda x:K.one_hot(x, embed_dim))
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, x):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return x + positions
class S2STransformerModel(S2SModel):
def create_model(self):
print("creating transformer")
token_count = len(self.tokenizer.word_index)
output_len = self.max_seq_length
inputs = layers.Input(shape=(output_len,),dtype='int32')
embedding_layer = TokenAndPositionEmbedding(output_len, token_count, token_count)
x = embedding_layer(inputs)
# embed_dim, num_heads, ff_dim, rate=0.1):
# TMP: token count as num_heads
transformer_block = TransformerBlock(token_count, token_count, self.latent_dim, 0)
x = transformer_block(x)
transformer_block = TransformerBlock(token_count, token_count, self.latent_dim, 0)
x = transformer_block(x)
t_dense = TimeDistributed(Dense(token_count, activation="softmax"))
output = t_dense(x)
model = Model(inputs=inputs, outputs=output)
model.compile(loss=self.LOSS_FN,
optimizer=self.OPTIMIZER,
run_eagerly=True,
metrics=[acc, seq_acc])
self.model = model
def predict(self, in_txts):
wrap = isinstance(in_txts, str)
txts = [in_txts] if wrap else in_txts
x = self.vectorize_batch(txts)
preds = self.model.predict(x).argmax(axis=2)
out_txts = [self.seq_to_text(seq) for seq in preds]
return out_txts[0] if wrap else out_txts
class SpellingTransformer(SpellingModel, S2STransformerModel):
pass