-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinPosPipeline.py
119 lines (74 loc) · 3.43 KB
/
linPosPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
import numpy as np
# import matplotlib.pyplot as plt
# import seaborn as sns
import scipy.io
import networkx as nx
import plot_linear_distance as pld
import loren_frank_data_processing as lfdp
import sys
import logging
import matlab.engine
def getPositionFromTrodesFile(posFile):
#this function will call readTrodesExtractedDataFile.m and return the data struct as a
#pandas df containing the two LED coordinates and head Angle (0 being x axis).
#Also returns midpoints of LED at each timestep.
eng.rTEDFPyth(posFile, nargout = 0)
pos, posLabel, midPoint = eng.retrievePositionPy2('data.mat', nargout = 3)
posData = {}
for i in range(len(posLabel)):
posData[posLabel[i]] = np.asarray(pos[i])
pos_df = pd.DataFrame.from_dict(posData)
#(x2,y2) is front LED
pos_df['headAngle'] = pd.Series(np.arctan((posData['y2'] - posData['y1'])/(posData['x2'] - posData['x1'])))
return pos_df, np.asarray(midPoint)
def createTrackGraph(tree_task):
#recieves track coordinates as array, and returns a networkx graph of the track
linearcoord = tree_task['linearcoord'].squeeze()
track_segments = [np.stack((arm[:-1], arm[1:]), axis=1) for arm in linearcoord]
center_well_position = track_segments[0][0][0]
track_segments, center_well_position = (np.unique(np.concatenate(track_segments), axis=0),
center_well_position)
nodes = np.unique(track_segments.reshape((-1, 2)), axis=0)
edges = np.zeros(track_segments.shape[:2], dtype=int)
for node_id, node in enumerate(nodes):
edge_ind = np.nonzero(np.isin(track_segments, node).sum(axis=2) > 1)
edges[edge_ind] = node_id
edge_distances = np.linalg.norm(
np.diff(track_segments, axis=-2).squeeze(), axis=1)
track_graph = nx.Graph()
for node_id, node_position in enumerate(nodes):
track_graph.add_node(node_id, pos=tuple(node_position))
for edge, distance in zip(edges, edge_distances):
track_graph.add_edge(edge[0], edge[1], distance=distance)
center_well_id = np.unique(
np.nonzero(np.isin(nodes, center_well_position).sum(axis=1) > 1)[0])[0]
return track_graph, track_segments, center_well_id
if __name__ == "__main__":
#First argument is track graph .mat file
#Second argument is the path to the position .dat file
#third argument is desired name of binned data numpy array
args = sys.argv[1:]
logging.basicConfig(level=logging.INFO)
eng = matlab.engine.start_matlab()
print(args)
tree_task = scipy.io.loadmat(args[0])
pos_df, position = getPositionFromTrodesFile(args[1])
track_graph, track_segments, center_well_id = createTrackGraph(tree_task)
###Track segment classification from position
track_segment_id = lfdp.track_segment_classification.classify_track_segments(
track_graph, position,
sensor_std_dev=10, route_euclidean_distance_scaling=1)
###Calculating linear distance from back well
linear_distance = lfdp.track_segment_classification.calculate_linear_distance(
track_graph, track_segment_id, center_well_id, position)
#Convert pixel to cm
linear_distance_cm = linear_distance / 4.37
###Smooth track segment identification and bin position based on track segment
track_smooth = pld.smooth_track_segs(track_segment_id)
linear_bin = pld.bin_position(linear_distance_cm, track_smooth)
pos_df['track_seg'] = pd.Series(track_smooth)
pos_df['lin_pos'] = pd.Series(linear_bin)
pld.plot_linear_distance(linear_distance_cm, linear_bin, position, (72000,73000))
np.save(args[2],linear_bin)
eng.quit()