forked from rutgersnu/xsec_analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathres_plots.C
810 lines (647 loc) · 30.4 KB
/
res_plots.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#include "FilePropertiesManager.hh"
#include "HistUtils.hh"
#include "UniverseMaker.hh"
// Script intended to help with choosing binning for kinematic variables
// The anticipated POT to use when scaling the MC prediction in the expected
// reco events plot. This will help ensure that all choices of reco binning
// are informed by the expected statistical uncertainties when the full dataset
// is analyzed.
constexpr double EXPECTED_POT = 6.790e20; // Full dataset for Runs 1-3
// Number of true bins to use when plotting true distributions in a given
// reco bin
constexpr int DEFAULT_TRUE_BINS = 100;
// ROOT integer code for Arial font
constexpr int FONT_STYLE = 62; // Arial
// When bins have zero content, set them to this very small value so that the
// colz style will still paint them
constexpr double REALLY_SMALL = 1e-11;
void make_res_plots( const std::string& branchexpr,
const std::string& variable_title, const std::string& selection,
const std::set<int>& runs, std::vector<double> bin_low_edges,
bool show_bin_plots = true,
bool show_smear_numbers = false,
int num_true_bins = DEFAULT_TRUE_BINS,
const std::string& mc_branchexpr = "",
const std::string& signal_cuts = "mc_is_signal",
const std::string& mc_event_weight = DEFAULT_MC_EVENT_WEIGHT )
{
// Get the outer edges of the reco-space bins. This will be used to set the
// plot range for the true-space histograms.
double xmin = bin_low_edges.front();
double xmax = bin_low_edges.back();
// If the user hasn't explicitly specified a branch expression for the
// true quantity, assume that it's the same as the reco quantity but
// with the prefix "mc_" added.
std::string true_branchexpr = mc_branchexpr;
if ( true_branchexpr.empty() ) {
true_branchexpr = "mc_" + branchexpr;
}
// Get access to the singleton utility class that manages the processed
// ntuple files
const FilePropertiesManager& fpm = FilePropertiesManager::Instance();
// Make a TChain to process the CV numu ntuples from the requested run(s).
// For the resolution studies, this is all we really need. Add the
// appropriate ntuples to the TChain. Also tally the total simulated
// POT for later scaling purposes.
TChain chain( "stv_tree" );
double total_simulated_POT = 0.;
const auto& ntuple_map = fpm.ntuple_file_map();
for ( const auto& run : runs ) {
const auto& ntuple_files = ntuple_map.at( run )
.at( NtupleFileType::kNumuMC );
for ( const auto& file_name : ntuple_files ) {
chain.Add( file_name.c_str() );
TFile temp_file( file_name.c_str(), "read" );
TParameter<float>* temp_pot = nullptr;
temp_file.GetObject( "summed_pot", temp_pot );
double pot = temp_pot->GetVal();
total_simulated_POT += pot;
}
}
// Dummy counter used to ensure that each histogram generated by this
// function has a unique name to use with TTree::Draw()
static int hist_count = 0;
if ( show_bin_plots ) {
for ( size_t b = 1u; b < bin_low_edges.size(); ++b ) {
++hist_count;
TCanvas* c = new TCanvas;
std::string true_hist_name = "true_hist" + std::to_string( hist_count );
TH1D* true_hist = new TH1D( true_hist_name.c_str(),
("true events in " + variable_title + " reco bin "
+ std::to_string(b) + "; " + variable_title + "; events").c_str(),
num_true_bins, xmin, xmax );
double reco_bin_min = bin_low_edges.at( b - 1 );
double reco_bin_max = bin_low_edges.at( b );
std::string cuts = mc_event_weight + " * (is_mc && " + signal_cuts
+ " && " + selection + " && " + branchexpr + " >= "
+ std::to_string( reco_bin_min ) + " && " + branchexpr
+ " < " + std::to_string( reco_bin_max ) + ')';
chain.Draw( (true_branchexpr + " >> " + true_hist_name).c_str(),
cuts.c_str(), "goff" );
true_hist->SetStats( false );
true_hist->SetLineWidth( 2 );
true_hist->SetLineColor( kBlack );
true_hist->Draw( "hist pe" );
// Prepare vertical lines to draw on the plot. These will show the
// boundaries of the reco bin in true space
double max_for_lines = std::numeric_limits<double>::max();
TLine* line_bin_min = new TLine( reco_bin_min, 0.,
reco_bin_min, max_for_lines );
TLine* line_bin_max = new TLine( reco_bin_max, 0.,
reco_bin_max, max_for_lines );
line_bin_min->SetLineColor( kRed );
line_bin_min->SetLineWidth( 2 );
line_bin_min->SetLineStyle( 1 );
line_bin_min->Draw( "same" );
line_bin_max->SetLineColor( kRed );
line_bin_max->SetLineWidth( 2 );
line_bin_max->SetLineStyle( 1 );
line_bin_max->Draw( "same" );
} // loop over reco bins
} // show bin plots
// Also get the total number of reco bins for the 2D smearing plot
int num_reco_bins = bin_low_edges.size() - 1u;
// Compute the smearing matrix for a choice of true bins that exactly
// match the ones in reco space.
std::string smear_hist_name = "smear_hist" + std::to_string( hist_count );
TH2D* smear_hist = new TH2D( smear_hist_name.c_str(),
("smearing matrix for " + variable_title + "; true " + variable_title
+ "; reco " + variable_title).c_str(), num_reco_bins, bin_low_edges.data(),
num_reco_bins, bin_low_edges.data() );
std::string smear_expr = branchexpr + " : " + true_branchexpr
+ " >> " + smear_hist_name;
std::string smear_cuts = mc_event_weight + " * (is_mc && " + signal_cuts
+ " && " + selection + ')';
chain.Draw( smear_expr.c_str(), smear_cuts.c_str(), "goff" );
// Before renormalizing the smearing matrix histogram, take a projection
// along the reco (y) axis. This will show the expected number of signal
// events in each reco bin according to our central value MC model. Reco bins
// should be chosen to have sufficient expected statistics in addition to
// small smearing.
TH1D* expected_reco_hist = smear_hist->ProjectionY();
// Scale the expected reco bin counts to the POT analyzed for the full
// dataset. Also set the bin stat uncertainties to the square root of their
// contents. This is not correct for getting the MC statistical uncertainties
// (which should use the sum of the squares of the weights to get the
// variance), but we're less interested in those. Primarily we'd like to know
// what the anticipated statistical uncertainties on the *measurement* will
// be. We can estimate that by choosing the bin errors in this way. This will
// help in the effort to choose suitable bins for reporting the final result.
expected_reco_hist->Scale( EXPECTED_POT / total_simulated_POT );
for ( int eb = 0; eb <= num_reco_bins + 1; ++eb ) {
double bin_events = expected_reco_hist->GetBinContent( eb );
double bin_stat_err = std::sqrt( std::max(0., bin_events) );
expected_reco_hist->SetBinError( eb, bin_stat_err );
}
expected_reco_hist->SetStats( false );
expected_reco_hist->SetLineColor( kBlack );
expected_reco_hist->SetLineWidth( 2 );
std::stringstream temp_ss;
temp_ss << "expected reco bin counts (" << EXPECTED_POT << " POT);"
<< " reco " << variable_title << "; events";
expected_reco_hist->SetTitle( temp_ss.str().c_str() );
TCanvas* c_expected = new TCanvas;
expected_reco_hist->Draw( "hist e" );
// Normalize the smearing matrix elements so that a sum over all reco bins
// (including the under/overflow bins) yields a value of one. This means that
// every selected signal event must end up somewhere in reco space.
int num_bins_x = smear_hist->GetXaxis()->GetNbins();
int num_bins_y = smear_hist->GetYaxis()->GetNbins();
// Loop over the true (x) bins. Include the underflow (index zero) and
// overflow (index num_bins_x + 1) bins.
for ( int bx = 0; bx <= num_bins_x + 1; ++bx ) {
// For the current true (x) bin, compute the sum of all reco (y) bins.
double y_sum = 0.;
for ( int by = 0; by <= num_bins_y + 1; ++by ) {
y_sum += smear_hist->GetBinContent( bx, by );
}
// Normalize each of the reco (y) bins so that the sum over y is unity.
for ( int by = 0; by <= num_bins_y + 1; ++by ) {
// To avoid dividing by zero, set the bin content to zero if the sum of
// the reco (y) bins is not positive.
if ( y_sum <= 0. ) {
//smear_hist->SetBinContent( bx, by, REALLY_SMALL );
smear_hist->SetBinContent( bx, by, 0. );
}
else {
// Otherwise, normalize in the usual way
double bc = smear_hist->GetBinContent( bx, by );
double content = std::max( bc / y_sum, REALLY_SMALL );
smear_hist->SetBinContent( bx, by, content );
}
} // loop over reco (y) bins
} // loop over true (x) bins
// Smearing matrix histogram style options
smear_hist->GetXaxis()->SetTitleFont( FONT_STYLE);
smear_hist->GetYaxis()->SetTitleFont( FONT_STYLE );
smear_hist->GetXaxis()->SetTitleSize( 0.05 );
smear_hist->GetYaxis()->SetTitleSize( 0.05 );
smear_hist->GetXaxis()->SetLabelFont( FONT_STYLE );
smear_hist->GetYaxis()->SetLabelFont( FONT_STYLE );
smear_hist->GetZaxis()->SetLabelFont( FONT_STYLE );
smear_hist->GetZaxis()->SetLabelSize( 0.03 );
smear_hist->GetXaxis()->CenterTitle();
smear_hist->GetYaxis()->CenterTitle();
smear_hist->GetXaxis()->SetTitleOffset( 1.2 );
smear_hist->GetYaxis()->SetTitleOffset( 1.1 );
smear_hist->SetStats( false );
smear_hist->SetMarkerSize( 1.8 ); // text size
smear_hist->SetMarkerColor( kWhite ); // text color
// Draw the smearing matrix plot
TCanvas* c_smear = new TCanvas;
c_smear->SetBottomMargin( 0.15 );
c_smear->SetLeftMargin( 0.13 );
if ( show_smear_numbers ) {
// Round all numbers to this precision when rendering them
gStyle->SetPaintTextFormat( "4.2f" );
smear_hist->Draw("text colz");
}
else {
smear_hist->Draw( "colz" );
}
// For each true bin, print the fraction of events that are reconstructed
// in the correct corresponding reco bin.
for ( int bb = 1; bb <= num_reco_bins; ++bb ) {
std::cout << "bin #" << bb << ": "
<< expected_reco_hist->GetBinLowEdge( bb ) << ", "
<< smear_hist->GetBinContent(bb, bb) << '\n';
}
}
// Overloaded version that uses a fixed number of equal-width bins
void make_res_plots( const std::string& branchexpr,
const std::string& variable_title, const std::string& selection,
const std::set<int>& runs,
double xmin, double xmax, int Nbins,
bool show_bin_plots = true,
bool show_smear_numbers = false,
int num_true_bins = DEFAULT_TRUE_BINS,
const std::string& mc_branchexpr = "",
const std::string& signal_cuts = "mc_is_signal",
const std::string& mc_event_weight = DEFAULT_MC_EVENT_WEIGHT )
{
auto low_edges = get_bin_low_edges( xmin, xmax, Nbins );
return make_res_plots( branchexpr, variable_title, selection, runs,
low_edges, show_bin_plots, show_smear_numbers, num_true_bins,
mc_branchexpr, signal_cuts, mc_event_weight );
}
void make_res_plots( const std::string& rmm_config_file_name,
const std::set<int>& runs,
const std::string& universe_branch_name = "TunedCentralValue_UBGenie",
size_t universe_index = 0u,
bool show_smear_numbers = false )
{
const std::string variable_title = "bin";
// Create a UniverseMaker object that will handle the actual
// calculation of the smearing matrix
UniverseMaker rmm( rmm_config_file_name );
// Get access to the singleton utility class that manages the processed
// ntuple files
const FilePropertiesManager& fpm = FilePropertiesManager::Instance();
// TODO: Reduce code duplication for the POT tallying
// Add the appropriate CV numu ntuples from the requested run(s) to the
// TChain owned by the UniverseMaker object. For the resolution
// studies, this is all we really need. Also tally the total simulated POT
// for later scaling purposes.
double total_simulated_POT = 0.;
const auto& ntuple_map = fpm.ntuple_file_map();
for ( const auto& run : runs ) {
const auto& ntuple_files = ntuple_map.at( run )
.at( NtupleFileType::kNumuMC );
for ( const auto& file_name : ntuple_files ) {
rmm.add_input_file( file_name );
TFile temp_file( file_name.c_str(), "read" );
TParameter<float>* temp_pot = nullptr;
temp_file.GetObject( "summed_pot", temp_pot );
double pot = temp_pot->GetVal();
total_simulated_POT += pot;
}
}
// Look up the MC event weights from the input files and construct the
// response matrices in the usual way. For speed, restrict the calculation to
// just the universe branch requested by the user (typically the CV branch).
rmm.build_universes( { universe_branch_name } );
// For all but the "unweighted" universe, the key used to look up
// the map entry is "weight_" prepended to the original ntuple branch name.
std::string universe_key = "unweighted";
if ( universe_key != universe_branch_name ) {
universe_key = "weight_" + universe_branch_name;
}
// Get access to the Universe object that stores the histograms of summed MC
// event weights that we need
const auto& universe = rmm.universe_map().at( universe_key )
.at( universe_index );
TH2D* smear_hist = dynamic_cast< TH2D* >(
universe.hist_2d_->Clone("smear_hist") );
// TODO: also reduce code duplication here
// Before renormalizing the smearing matrix histogram, take a projection
// along the reco (y) axis. This will show the expected number of signal
// events in each reco bin according to our central value MC model. Reco bins
// should be chosen to have sufficient expected statistics in addition to
// small smearing.
TH1D* expected_reco_hist = smear_hist->ProjectionY();
int num_reco_bins = expected_reco_hist->GetNbinsX();
// Scale the expected reco bin counts to the POT analyzed for the full
// dataset. Also set the bin stat uncertainties to the square root of their
// contents. This is not correct for getting the MC statistical uncertainties
// (which should use the sum of the squares of the weights to get the
// variance), but we're less interested in those. Primarily we'd like to know
// what the anticipated statistical uncertainties on the *measurement* will
// be. We can estimate that by choosing the bin errors in this way. This will
// help in the effort to choose suitable bins for reporting the final result.
expected_reco_hist->Scale( EXPECTED_POT / total_simulated_POT );
for ( int eb = 0; eb <= num_reco_bins + 1; ++eb ) {
double bin_events = expected_reco_hist->GetBinContent( eb );
double bin_stat_err = std::sqrt( std::max(0., bin_events) );
expected_reco_hist->SetBinError( eb, bin_stat_err );
}
expected_reco_hist->SetStats( false );
expected_reco_hist->SetLineColor( kBlack );
expected_reco_hist->SetLineWidth( 2 );
std::stringstream temp_ss;
temp_ss << "expected reco bin counts (" << EXPECTED_POT << " POT);"
<< " reco " << variable_title << "; events";
expected_reco_hist->SetTitle( temp_ss.str().c_str() );
TCanvas* c_expected = new TCanvas;
expected_reco_hist->Draw( "hist e" );
// Normalize the smearing matrix elements so that a sum over all reco bins
// (including the under/overflow bins) yields a value of one. This means that
// every selected signal event must end up somewhere in reco space.
int num_bins_x = smear_hist->GetXaxis()->GetNbins();
int num_bins_y = smear_hist->GetYaxis()->GetNbins();
// Loop over the true (x) bins. Include the underflow (index zero) and
// overflow (index num_bins_x + 1) bins.
for ( int bx = 0; bx <= num_bins_x + 1; ++bx ) {
// For the current true (x) bin, compute the sum of all reco (y) bins.
double y_sum = 0.;
for ( int by = 0; by <= num_bins_y + 1; ++by ) {
y_sum += smear_hist->GetBinContent( bx, by );
}
// Normalize each of the reco (y) bins so that the sum over y is unity.
for ( int by = 0; by <= num_bins_y + 1; ++by ) {
// To avoid dividing by zero, set the bin content to zero if the sum of
// the reco (y) bins is not positive.
if ( y_sum <= 0. ) {
//smear_hist->SetBinContent( bx, by, REALLY_SMALL );
smear_hist->SetBinContent( bx, by, 0. );
}
else {
// Otherwise, normalize in the usual way
double bc = smear_hist->GetBinContent( bx, by );
double content = std::max( bc / y_sum, REALLY_SMALL );
smear_hist->SetBinContent( bx, by, content );
}
} // loop over reco (y) bins
} // loop over true (x) bins
// Smearing matrix histogram style options
smear_hist->GetXaxis()->SetTitleFont( FONT_STYLE);
smear_hist->GetYaxis()->SetTitleFont( FONT_STYLE );
smear_hist->GetXaxis()->SetTitleSize( 0.05 );
smear_hist->GetYaxis()->SetTitleSize( 0.05 );
smear_hist->GetXaxis()->SetLabelFont( FONT_STYLE );
smear_hist->GetYaxis()->SetLabelFont( FONT_STYLE );
smear_hist->GetZaxis()->SetLabelFont( FONT_STYLE );
smear_hist->GetZaxis()->SetLabelSize( 0.03 );
smear_hist->GetXaxis()->CenterTitle();
smear_hist->GetYaxis()->CenterTitle();
smear_hist->GetXaxis()->SetTitleOffset( 1.2 );
smear_hist->GetYaxis()->SetTitleOffset( 1.1 );
smear_hist->SetStats( false );
smear_hist->SetMarkerSize( 1.8 ); // text size
smear_hist->SetMarkerColor( kWhite ); // text color
// Draw the smearing matrix plot
TCanvas* c_smear = new TCanvas;
c_smear->SetBottomMargin( 0.15 );
c_smear->SetLeftMargin( 0.13 );
if ( show_smear_numbers ) {
// Round all numbers to this precision when rendering them
gStyle->SetPaintTextFormat( "4.2f" );
smear_hist->Draw("text colz");
}
else {
smear_hist->Draw( "colz" );
}
// Draw a vertical red line to separate the signal true bins from the
// background true bins in the smearing matrix plot. Start by finding
// where the first background bin is. Here we assume that the full set
// of signal bins comes before any background bins.
const auto& true_bins = rmm.true_bins();
size_t num_true_bins = true_bins.size();
size_t first_bkgd_bin_idx = num_true_bins;
for ( size_t t = 0u; t < num_true_bins; ++t ) {
const auto& tbin = true_bins.at( t );
if ( tbin.type_ == TrueBinType::kBackgroundTrueBin ) {
first_bkgd_bin_idx = t;
break;
}
}
// We've found the bin index. Now draw the line to indicate the
// signal/background boundary in true space
TLine* bkgd_line = new TLine( first_bkgd_bin_idx, 0.,
first_bkgd_bin_idx, num_reco_bins );
bkgd_line->SetLineColor( kRed );
bkgd_line->SetLineWidth( 3 );
bkgd_line->SetLineStyle( 2 );
bkgd_line->Draw( "same" );
// For each true bin, print the fraction of events that are reconstructed
// in the correct corresponding reco bin.
for ( int bb = 1; bb <= num_reco_bins; ++bb ) {
std::cout << "bin #" << bb << ": "
<< expected_reco_hist->GetBinLowEdge( bb ) << ", "
<< smear_hist->GetBinContent(bb, bb) << '\n';
}
}
void res_plots() {
//auto& fpm = FilePropertiesManager::Instance();
//fpm.load_file_properties( "new_file_properties.txt" );
//make_res_plots( "delta_alphaT * 180 / TMath::ACos(-1.)", "#delta#alpha_{T}", "sel_CCNp0pi", {1},
// { 0, 25., 60., 95., 120., 145., 165., 180. },
// false );
//make_res_plots( "delta_pT", "#deltap_{T}", "sel_CCNp0pi", {1},
// { 0, 0.06, 0.12, 0.18, 0.24, 0.32, 0.4, 0.48, 0.55, 0.68,
// 0.75, 0.9 },
// false );
// deltaPT in deltaAlphaT slices
//{
// { 0., { 0, 0.06, 0.12, 0.18, 0.24, 0.32, 0.4, 0.48, 0.9 } },
// { 45., { 0, 0.06, 0.12, 0.18, 0.24, 0.32, 0.4, 0.48, 0.55, 0.9 },
// { 90., { 0, 0.06, 0.12, 0.18, 0.24, 0.32, 0.4, 0.48, 0.55, 0.68, 0.9 },
// { 135., { 0, 0.06, 0.12, 0.18, 0.24, 0.32, 0.4, 0.5, 0.6, 0.72, 0.9 } },
// { 180., {} },
//}
//// deltaAlphaT in deltaPT slices
//{
// { 0., { 0, 25., 60., 95., 120., 145., 165., 180. } },
// { 0.2, { 0, 25., 60., 95., 120., 145., 165., 180. } },
// { 0.3, { 0, 25., 60., 95., 120., 145., 165., 180. } },
// { >= 0.4, { 0, 25., 60., 95., 120., 145., 165., 180. } },
//}
//make_res_plots( "delta_pTy", "#deltap_{Ty}", "sel_CCNp0pi", {1},
// { -0.6, -0.45, -0.35, -0.25, -0.15, -0.075, 0, 0.075, 0.15, 0.25,
// 0.35, 0.45, 0.6 },
// false );
//make_res_plots( "p3_lead_p.Mag()", "p_p", "sel_CCNp0pi", {1},
// { 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
// 0.85, 0.9, 0.95, 1.0 },
// false );
//make_res_plots( "p3_mu.Mag()", "p_#mu", "sel_CCNp0pi", {1},
// { 0.1, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4,
// 0.425, 0.45, 0.475, 0.5, 0.55, 0.6, 0.65,
// 0.7, 0.75, 0.8, 0.85, 0.9,
// 0.95, 1.0, 1.1, 1.2 },
// false );
make_res_plots( "p3_lead_p.CosTheta()", "#cos#theta_{p}", "sel_CCNp0pi", {1},
{ -1., -0.9, -0.75, -0.6, -0.45, -0.3, -0.15, 0.0,
0.15, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 1.0 }, false );
// delta_pTx in delta_pTy slices
//{
// { < -0.15, { -0.6, -0.45, -0.35, -0.25, -0.15, -0.075, 0, 0.075, 0.15, 0.25,
// 0.35, 0.45, 0.6 } },
// { >= -0.15 && < 0.15, { -0.6, -0.45, -0.35, -0.25, -0.15, -0.075, 0, 0.075, 0.15, 0.25,
// 0.35, 0.45, 0.6 } },
// { > 0.15, { -0.6, -0.35, -0.25, -0.15, 0, 0.15, 0.25, 0.35, 0.6 } },
//}
//// Muon-proton opening angle
//make_res_plots( "TMath::ACos( (p3_mu.X()*p3_lead_p.X() + "
// "p3_mu.Y()*p3_lead_p.Y() + p3_mu.Z()*p3_lead_p.Z()) / p3_mu.Mag()"
// "/ p3_lead_p.Mag() ) * 180. / TMath::ACos(-1.)",
// "#theta_{#mu-p}", "sel_CCNp0pi", std::set<int>{1},
// { 0., 30., 40., 50., 60., 70., 80., 90., 100., 110., 120., 130.,
// 140., 150., 180. },
// false, false, DEFAULT_TRUE_BINS,
// "TMath::ACos( (mc_p3_mu.X()*mc_p3_lead_p.X() + mc_p3_mu.Y()"
// "*mc_p3_lead_p.Y() + mc_p3_mu.Z()*mc_p3_lead_p.Z()) / mc_p3_mu.Mag()"
// " / mc_p3_lead_p.Mag() ) * 180. / TMath::ACos(-1.)"
//);
//make_res_plots( "pn", "p_{n}", "sel_CCNp0pi", {1},
// { 0., 0.07, 0.14, 0.21, 0.28, 0.35,
// 0.45, 0.54, 0.66, 0.77, 0.9 },
// false );
// Muon-proton opening angle in pn slices
//make_res_plots( "TMath::ACos( (p3_mu.X()*p3_lead_p.X() + "
// "p3_mu.Y()*p3_lead_p.Y() + p3_mu.Z()*p3_lead_p.Z()) / p3_mu.Mag()"
// "/ p3_lead_p.Mag() ) * 180. / TMath::ACos(-1.)",
// "#theta_{#mu-p}", "sel_CCNp0pi && pn >= 0.45", std::set<int>{1},
// { 0., 30., 45., 60., 75., 90., 105., 120., 135.,
// 150., 180. },
// false, false, DEFAULT_TRUE_BINS,
// "TMath::ACos( (mc_p3_mu.X()*mc_p3_lead_p.X() + mc_p3_mu.Y()"
// "*mc_p3_lead_p.Y() + mc_p3_mu.Z()*mc_p3_lead_p.Z()) / mc_p3_mu.Mag()"
// " / mc_p3_lead_p.Mag() ) * 180. / TMath::ACos(-1.)"
//);
// Muon-proton opening angle in pn slices
//{
// { 0. <= pn < 0.21, { 0., 60., 70., 80., 90., 100., 110., 120., 130.,
// 140., 150., 180. } },
// { 0.21 <= pn < 0.45, { 0., 45., 60., 75., 90., 100., 110., 120., 130.,
// 140., 150., 180. },
// { pn > 0.45, { 0., 30., 45., 60., 75., 90., 105., 120., 135.,
// 150., 180. } },
// "TMath::ACos( (mc_p3_mu.X()*mc_p3_lead_p.X() + "
// "mc_p3_mu.Y()*mc_p3_lead_p.Y() + mc_p3_mu.Z()*mc_p3_lead_p.Z())"
// " / mc_p3_mu.Mag() / mc_p3_lead_p.Mag() )"
//);
//make_res_plots( "delta_pTx", "#deltap_{Tx}",
// "sel_CCNp0pi && mc_delta_pTy > 0.15", {1},
// { -0.6, -0.35, -0.25, -0.15, 0, 0.15, 0.25,
// 0.35, 0.6 },
// false );
//make_res_plots( "delta_alphaT * 180 / TMath::ACos(-1.)", "#delta#alpha_{T}",
// "sel_CCNp0pi && mc_delta_pT >= 0.4", {1},
// { 0, 25., 60., 95., 120., 145., 165., 180. },
// false );
//make_res_plots( "myconfig_mcc9_2D_proton.txt", {1} );
// Muon momentum
//make_res_plots( "p3_mu.Mag()", "p_{#mu}", "sel_CCNp0pi", {1},
// { 0.1, 0.17, 0.2, 0.23, 0.26, 0.29, 0.32, 0.35, 0.38, 0.42,
// 0.45, 0.48, 0.51, 0.55, 0.59, 0.64, 0.69, 0.74, 0.79,
// 0.84, 0.89, 0.94, 1.0, 1.1, 1.2 },
// false );
// Leading proton momentum
//make_res_plots( "p3_lead_p.Mag()", "p_{lead p}",
// "sel_CCNp0pi", {1},
//{ 0.250, 0.325, 0.4, 0.45, 0.5, 0.550, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
// 0.9, 1.0 },
//false );
// make_res_plots( "p3_lead_p.CosTheta()", "cos#theta_{p}",
// "sel_CCNp0pi && mc_p3_lead_p.Mag() >= 0.75 && mc_p3_lead_p.Mag() < 0.8",
// {1},
//{ -1, 0.55, 0.7, 0.8, 0.87, 1.0 }
// , false );
/////// END NEW STUFF
//make_res_plots( "p3_lead_p.CosTheta()", "cos#theta_{p}",
// "sel_CCNp0pi", {1},
// { -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8,
// 0.85, 0.9, 0.95, 1.0 },
// false );
//make_res_plots( "pn", "p_{n}", "sel_CCNp0pi", {2},
// { 0., 0.125, 0.225, 0.325, 0.425, 0.525, 0.65, 0.85 },
// true, true );
//make_res_plots( "delta_alphaT", "#delta#alpha_{T}", "sel_CCNp0pi", {1},
// { 0, 0.35, 0.85, 1.35, 1.85, 2.3, 2.7, 2.95, M_PI },
// true, false );
//make_res_plots( "delta_pTx", "#deltap_{Tx}", "sel_CCNp0pi", {1},
// { -0.6, -0.45, -0.35, -0.25, -0.15, -0.075, 0, 0.075, 0.15, 0.25,
// 0.35, 0.45, 0.6 },
// false, true );
//make_res_plots( "delta_pTy", "#deltap_{Ty}", "sel_CCNp0pi", {1},
// { -0.8, -0.55, -0.39, -0.2125, -0.05, 0.1, 0.225, 0.3375, 0.5 },
// false, true );
//make_res_plots( "delta_pL", "#deltap_{L}", "sel_CCNp0pi", {1},
// { -0.8, -0.6, -0.475, -0.35, -0.225, -0.115,
// -0.0285, 0.0575, 0.145, 0.230, 0.315,
// 0.4 }, false, true );
//make_res_plots( "delta_phiT", "#delta#phi_{T}", "sel_CCNp0pi", {1},
//{ 0., 0.075, 0.2, 0.35, 0.5, 0.7, 0.9, 1.15, 1.4, 1.65, 1.9, 2.35,
// 2.8, M_PI },
//false, false );
//make_res_plots( "delta_pT", "#deltap_{T}", "sel_CCNp0pi", {1},
// { 0, 0.1, 0.2, 0.3, 0.4, 0.525, 0.675, 0.9 },
// false, true );
/// Muon-proton opening angle
//make_res_plots( "TMath::ACos( (p3_mu.X()*p3_lead_p.X() + "
// "p3_mu.Y()*p3_lead_p.Y() + p3_mu.Z()*p3_lead_p.Z()) / p3_mu.Mag()"
// "/ p3_lead_p.Mag() )", "#theta_{#mu-p}", "sel_CCNp0pi", std::set<int>{1},
// { 0, 0.52, 0.78, 1.0, 1.15, 1.35, 1.5, 1.65, 1.8, 1.95, 2.1,
// 2.35, 2.62, M_PI },
// false, false, DEFAULT_TRUE_BINS,
// "TMath::ACos( (mc_p3_mu.X()*mc_p3_lead_p.X() + "
// "mc_p3_mu.Y()*mc_p3_lead_p.Y() + mc_p3_mu.Z()*mc_p3_lead_p.Z())"
// " / mc_p3_mu.Mag() / mc_p3_lead_p.Mag() )"
//);
//make_res_plots( "p3_mu.Mag()", "p_{#mu}", "sel_CCNp0pi", {1},
// { 0.1, 0.17, 0.24, 0.3, 0.48, 0.75, 1.14, 2.5 },
// false );
//make_res_plots( "p3_mu.CosTheta()", "cos(#theta_{#mu})",
// "sel_CCNp0pi && p3_mu.Mag() >= 0.1 && p3_mu.Mag() < 0.48"
// " && p3_lead_p.Mag() >= 0.25 && p3_lead_p.Mag() < 0.5"
// " && p3_lead_p.CosTheta() >= 0.5 && p3_lead_p.CosTheta() < 1.", {1},
// { -1, -0.1, 0.35, 0.7, 0.85, 1.00 },
// false );
//make_res_plots( "p3_mu.CosTheta()", "cos(#theta_{#mu})",
// "sel_CCNp0pi", {1},
// { -1, -0.85, -0.775, -0.7, -0.625, -0.55, -0.475, -0.4, -0.325,
// -0.25, -0.175, -0.1, -0.025, 0.05, 0.125, 0.2, 0.275, 0.35, 0.425, 0.5,
// 0.575, 0.65, 0.725, 0.8, 0.85, 0.875, 0.9, 0.925, 0.950, 0.975, 1.00 },
// false );
//make_res_plots( "p3_mu.Mag()", "p_{#mu}", "sel_CCNp0pi", {1},
// { 0.1, 0.17, 0.21, 0.24, 0.27, 0.3, 0.38, 0.48, 0.75, 1.14, 2.5, 100. },
// false );
///////////////////////////////////////////////////////
// 2D muon binning study
///////////////////////////////////////////////////////
//make_res_plots( "p3_mu.CosTheta()", "cos#theta_{#mu}",
// "sel_CCNp0pi && p3_mu.Mag() >= 0.1 && p3_mu.Mag() < 0.17", {1},
// { -1, 0., 1. },
// "sel_CCNp0pi && p3_mu.Mag() >= 0.17 && p3_mu.Mag() < 0.21", {1},
// { -1, -0.2, 0.4, 1. },
// "sel_CCNp0pi && p3_mu.Mag() >= 0.21 && p3_mu.Mag() < 0.24", {1},
// { -1, -0.2, 0.4, 1.00 },
// "sel_CCNp0pi && p3_mu.Mag() >= 0.24 && p3_mu.Mag() < 0.27", {1},
// { -1, -0.1, 0.5, 1.00 },
// "sel_CCNp0pi && p3_mu.Mag() >= 0.27 && p3_mu.Mag() < 0.3", {1},
// { -1, -0.1, 0.35, 0.6, 1.00 },
// "sel_CCNp0pi && p3_mu.Mag() >= 0.3 && p3_mu.Mag() < 0.38", {1},
// { -1, -0.4, -0.1, 0.1, 0.35, 0.5, 0.7, 0.85, 1.00 },
//"sel_CCNp0pi && p3_mu.Mag() >= 0.38 && p3_mu.Mag() < 0.48", {1},
//{ -1, 0, 0.5, 0.65, 0.8, 0.92, 1.00 },
//"sel_CCNp0pi && p3_mu.Mag() >= 0.48 && p3_mu.Mag() < 0.75", {1},
//{ -1, 0.2, 0.5, 0.65, 0.8, 0.875, 0.950, 1.00 },
//"sel_CCNp0pi && p3_mu.Mag() >= 0.75 && p3_mu.Mag() < 1.14", {1},
//{ -1, 0.5, 0.8, 0.875, 0.950, 1.00 },
//"sel_CCNp0pi && p3_mu.Mag() >= 1.14 && p3_mu.Mag() < 2.5", {1},
//{ -1, 0.75, 0.85, 0.9, 0.950, 1.00 },
//false );
//make_res_plots( "myconfig_mcc9_2D_muon.txt", {1} );
///////////////////////////////////////////////////////
// 2D proton binning study
///////////////////////////////////////////////////////
//make_res_plots( "p3_lead_p.Mag()", "p_{lead p}",
// "sel_CCNp0pi", {1},
//{ 0.250, 0.325, 0.4, 0.45, 0.5, 0.550, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
// 0.975, 1.20 },
//false );
//make_res_plots( "p3_lead_p.CosTheta()", "cos#theta_{p}",
// "sel_CCNp0pi", {1},
// { -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8,
// 0.85, 0.9, 0.95, 1.0 },
// false );
//make_res_plots( "p3_lead_p.CosTheta()", "cos#theta_{p}",
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.250 && p3_lead_p.Mag() < 0.325", {1},
// { -1, -0.5, 0.1, 0.6, 1.0 },
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.325 && p3_lead_p.Mag() < 0.4", {1},
// { -1, -0.7, -0.4, 0, 0.4, 0.6, 0.8, 1.0 },
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.4 && p3_lead_p.Mag() < 0.45", {1},
// { -1, -0.5, -0.1, 0.2, 0.5, 0.65, 0.85, 1.0 },
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.45 && p3_lead_p.Mag() < 0.5", {1},
// { -1, -0.4, 0, 0.2, 0.4, 0.55, 0.65, 0.8, 0.92, 1.0 },
//CCCC
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.5 && p3_lead_p.Mag() < 0.550", {1},
// { -1, -0.2, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 },
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.550 && p3_lead_p.Mag() < 0.6", {1},
// { -1, 0, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 },
//CCCC
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.6 && p3_lead_p.Mag() < 0.65", {1},
// { -1, 0.1, 0.37, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 },
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.65 && p3_lead_p.Mag() < 0.7", {1},
// { -1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 },
//CCCC
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.7 && p3_lead_p.Mag() < 0.75", {1},
// { -1, 0.45, 0.65, 0.75, 0.82, 0.9, 1.0 },
//CCCC
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.75 && p3_lead_p.Mag() < 0.8", {1},
// { -1, 0.55, 0.7, 0.8, 0.87, 1.0 },
//CCCC
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.8 && p3_lead_p.Mag() < 0.85", {1},
// { -1, 0.65, 0.78, 0.89, 1.0 },
//CCCC
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.85 && p3_lead_p.Mag() < 0.9", {1},
// { -1, 0.73, 0.86, 1.0 },
//CCCC 150
//"sel_CCNp0pi && p3_lead_p.Mag() >= 0.9 && p3_lead_p.Mag() < 0.975", {1},
//{ -1, 0.77, 0.88, 1.0 },
//CCCC 150
// "sel_CCNp0pi && p3_lead_p.Mag() >= 0.975 && p3_lead_p.Mag() < 1.20", {1},
// { -1, 0.84, 1.0 },
//false );
//make_res_plots( "myconfig_mcc9_2D_proton.txt", {1} );
}