forked from rutgersnu/xsec_analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnfolder.hh
334 lines (269 loc) · 12.8 KB
/
Unfolder.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#pragma once
// Standard library includes
#include <memory>
#include <set>
#include <stdexcept>
// STV analysis includes
#include "SystematicsCalculator.hh"
// Simple container for the output of Unfolder::unfold()
struct UnfoldedMeasurement {
UnfoldedMeasurement( TMatrixD* unfolded_signal, TMatrixD* cov_matrix,
TMatrixD* unfolding_matrix, TMatrixD* err_prop_matrix,
TMatrixD* add_smear_matrix, TMatrixD* smearcept )
: unfolded_signal_( unfolded_signal ), cov_matrix_( cov_matrix ),
unfolding_matrix_( unfolding_matrix ), err_prop_matrix_( err_prop_matrix ),
add_smear_matrix_( add_smear_matrix ), response_matrix_( smearcept )
{}
std::unique_ptr< TMatrixD > unfolded_signal_;
std::unique_ptr< TMatrixD > cov_matrix_;
std::unique_ptr< TMatrixD > unfolding_matrix_;
std::unique_ptr< TMatrixD > err_prop_matrix_;
std::unique_ptr< TMatrixD > add_smear_matrix_;
std::unique_ptr< TMatrixD > response_matrix_;
};
// Container for mapping block indices to bin indices in
// Unfolder::blockwise_unfold()
struct BlockBins {
BlockBins() {}
std::vector< size_t > true_bin_indices_;
std::vector< size_t > reco_bin_indices_;
};
// Abstract base class for objects that implement an algorithm for unfolding
// measured background-subtracted event counts from reco space to
// true space, possibly with regularization.
class Unfolder {
public:
Unfolder() {}
// Function that actually implements a specific unfolding algorithm
virtual UnfoldedMeasurement unfold( const TMatrixD& data_signal,
const TMatrixD& data_covmat, const TMatrixD& smearcept,
const TMatrixD& prior_true_signal ) const = 0;
virtual UnfoldedMeasurement unfold(
const SystematicsCalculator& syst_calc ) const final;
// Helper function that sets up unfolding for multiple blocks of bins,
// then combines the results
virtual UnfoldedMeasurement blockwise_unfold(
const TMatrixD& data_signal, const TMatrixD& data_covmat,
const TMatrixD& smearcept, const TMatrixD& prior_true_signal,
const std::vector< TrueBin >& true_bins,
const std::vector< RecoBin >& reco_bins ) const final;
protected:
// Helper function that does some sanity checks on the dimensions of the
// input matrices passed to unfold()
static void check_matrices( const TMatrixD& data_signal,
const TMatrixD& data_covmat, const TMatrixD& smearcept,
const TMatrixD& prior_true_signal );
};
UnfoldedMeasurement Unfolder::unfold(
const SystematicsCalculator& syst_calc ) const
{
// Extract the inputs needed for the unfolding procedure from the
// supplied SystematicsCalculator object
auto smearcept = syst_calc.get_cv_smearceptance_matrix();
auto true_signal = syst_calc.get_cv_true_signal();
auto meas = syst_calc.get_measured_events();
const auto& data_signal = meas.reco_signal_;
const auto& data_covmat = meas.cov_matrix_;
// Check the signal true bin definitions for the presence of multiple
// block indices. Store all distinct values in a std::set. We will
// assume here that the ordinary reco bin blocks are defined in a
// compatible way.
// TODO: add error handling for bad block configurations
std::set< int > true_blocks;
for ( const auto& tb : syst_calc.true_bins_ ) {
if ( tb.type_ == TrueBinType::kSignalTrueBin ) {
true_blocks.insert( tb.block_index_ );
}
}
// If multiple blocks are present, we need to unfold them individually
// and then combine the results
size_t num_blocks = true_blocks.size();
if ( num_blocks > 1u ) {
return this->blockwise_unfold( *data_signal, *data_covmat, *smearcept,
*true_signal, syst_calc.true_bins_, syst_calc.reco_bins_ );
}
// If there is only one block, we can just handle it directly
return this->unfold( *data_signal, *data_covmat, *smearcept, *true_signal );
}
void Unfolder::check_matrices( const TMatrixD& data_signal,
const TMatrixD& data_covmat, const TMatrixD& smearcept,
const TMatrixD& prior_true_signal )
{
// Check the matrix dimensions for sanity
int num_ordinary_reco_bins = smearcept.GetNrows();
int num_true_signal_bins = smearcept.GetNcols();
if ( data_signal.GetNcols() != 1 ) {
throw std::runtime_error( "The background-subtracted data event counts"
" must be expressed as a column vector" );
}
if ( prior_true_signal.GetNcols() != 1 ) {
throw std::runtime_error( "The prior true signal event counts must be"
" expressed as a column vector" );
}
if ( data_signal.GetNrows() != num_ordinary_reco_bins ) {
throw std::runtime_error( "Reco bin mismatch between background-"
"subtracted data and the smearceptance matrix" );
}
if ( data_covmat.GetNrows() != num_ordinary_reco_bins
|| data_covmat.GetNcols() != num_ordinary_reco_bins )
{
throw std::runtime_error( "Dimension mismatch between data covariance"
" matrix and the smearceptance matrix" );
}
if ( prior_true_signal.GetNrows() != num_true_signal_bins ) {
throw std::runtime_error( "Dimension mismatch between prior true signal"
" event counts and the smearceptance matrix" );
}
}
UnfoldedMeasurement Unfolder::blockwise_unfold( const TMatrixD& data_signal,
const TMatrixD& data_covmat, const TMatrixD& smearcept,
const TMatrixD& prior_true_signal, const std::vector< TrueBin >& true_bins,
const std::vector< RecoBin >& reco_bins ) const
{
// Build a map of block indices to sets of signal true bin indices and
// ordinary reco bin indices. This will be used below to extract each
// individual block from the input matrices.
std::map< int, BlockBins > block_map;
for ( size_t tb = 0u; tb < true_bins.size(); ++tb ) {
const auto& tbin = true_bins.at( tb );
if ( tbin.type_ == TrueBinType::kSignalTrueBin ) {
int b_idx = tbin.block_index_;
auto& block_bins = block_map[ b_idx ];
block_bins.true_bin_indices_.push_back( tb );
}
}
for ( size_t rb = 0u; rb < reco_bins.size(); ++rb ) {
const auto& rbin = reco_bins.at( rb );
if ( rbin.type_ == RecoBinType::kOrdinaryRecoBin ) {
int b_idx = rbin.block_index_;
auto& block_bins = block_map[ b_idx ];
block_bins.reco_bin_indices_.push_back( rb );
}
}
// TODO: add sanity checks of the block definitions
// Create a single-column TMatrixD with the same number of true bins as the
// prior. This will be used to combine the unfolded true bin counts from the
// blocks to produce a final result.
int num_true_signal_bins = prior_true_signal.GetNrows();
TMatrixD* unfolded_signal = new TMatrixD( num_true_signal_bins, 1 );
// Zero out the initial elements, just in case
unfolded_signal->Zero();
// Create a TMatrixD to hold the measurement error propagation matrix
// aggregated across all blocks. This will be used to obtain the full
// covariance matrix on the unfolded bin counts (including inter-block
// covariances)
int num_ordinary_reco_bins = data_signal.GetNrows();
auto* err_prop = new TMatrixD( num_true_signal_bins, num_ordinary_reco_bins );
// Zero out the initial elements, just in case
err_prop->Zero();
// Create a TMatrixD to hold the full unfolding matrix combined over
// multiple blocks
auto* unfold_mat = new TMatrixD( num_true_signal_bins,
num_ordinary_reco_bins );
unfold_mat->Zero();
// Create a TMatrixD to hold the additional smearing matrix used to apply
// regularization to theoretical predictions
auto* add_smear = new TMatrixD( num_true_signal_bins, num_true_signal_bins );
add_smear->Zero();
// Create a TMatrixD to hold the detector response ("smearceptance") matrix
// used to build the unfolding matrix
auto* resp_mat = new TMatrixD( num_ordinary_reco_bins, num_true_signal_bins );
resp_mat->Zero();
// Loop over the blocks. For each block, populate the input matrices and
// unfold.
for ( const auto& block_pair : block_map ) {
int b_idx = block_pair.first;
const auto& block_bins = block_pair.second;
std::cout << "Unfolding block " << b_idx << '\n';
// Get the dimensions of the current block
int num_block_true_bins = block_bins.true_bin_indices_.size();
int num_block_reco_bins = block_bins.reco_bin_indices_.size();
if ( num_block_true_bins < 1 ) throw std::runtime_error( "Block with zero"
" true bins encountered" );
if ( num_block_reco_bins < 1 ) throw std::runtime_error( "Block with zero"
" reco bins encountered" );
// Prepare matrices to store the block contents
TMatrixD block_data_signal( num_block_reco_bins, 1 );
TMatrixD block_data_covmat( num_block_reco_bins, num_block_reco_bins );
TMatrixD block_smearcept( num_block_reco_bins, num_block_true_bins );
TMatrixD block_prior_true_signal( num_block_true_bins, 1 );
// Populate the matrices for the current block
for ( int block_tb = 0; block_tb < num_block_true_bins; ++block_tb ) {
// Convert the current true bin index at the block level to the
// one at the global level
int tb = block_bins.true_bin_indices_.at( block_tb );
// Copy the prior true bin contents into the block
block_prior_true_signal( block_tb, 0 ) = prior_true_signal( tb, 0 );
for ( int block_rb = 0; block_rb < num_block_reco_bins; ++block_rb ) {
// Convert the current reco bin index at the block level to the one
// at the global level
int rb = block_bins.reco_bin_indices_.at( block_rb );
// Copy the smearceptance matrix contents into the block
block_smearcept( block_rb, block_tb ) = smearcept( rb, tb );
}
}
for ( int block_rb1 = 0; block_rb1 < num_block_reco_bins; ++block_rb1 ) {
// Convert the current reco bin index at the block level to the one
// at the global level
int rb1 = block_bins.reco_bin_indices_.at( block_rb1 );
// Copy the background-subtracted reco bin contents into the block
block_data_signal( block_rb1, 0 ) = data_signal( rb1, 0 );
for ( int block_rb2 = 0; block_rb2 < num_block_reco_bins; ++block_rb2 ) {
// Convert the current reco bin index at the block level to the one
// at the global level
int rb2 = block_bins.reco_bin_indices_.at( block_rb2 );
// Copy the reco-space covariance matrix element into the block
block_data_covmat( block_rb1, block_rb2 ) = data_covmat( rb1, rb2 );
}
}
// Unfold the measurement for the current block
auto block_result = this->unfold( block_data_signal, block_data_covmat,
block_smearcept, block_prior_true_signal );
// Store the partial results for this block in the appropriate parts of the
// matrices describing the full measurement
for ( int block_tb = 0; block_tb < num_block_true_bins; ++block_tb ) {
// Convert the current true bin index at the block level to the one
// at the global level
int tb = block_bins.true_bin_indices_.at( block_tb );
// Copy the unfolded true bin contents from the current block
unfolded_signal->operator()( tb, 0 )
= block_result.unfolded_signal_->operator()( block_tb, 0 );
for ( int block_rb = 0; block_rb < num_block_reco_bins; ++block_rb ) {
// Convert the current reco bin index at the block level to the one
// at the global level
int rb = block_bins.reco_bin_indices_.at( block_rb );
// Copy the measurement error propagation matrix element from the
// current block
err_prop->operator()( tb, rb ) = block_result.err_prop_matrix_
->operator()( block_tb, block_rb );
// Copy the unfolding matrix element from the current block
unfold_mat->operator()( tb, rb ) = block_result.unfolding_matrix_
->operator()( block_tb, block_rb );
// Copy the response ("smearceptance") matrix element from the
// current block
resp_mat->operator()( rb, tb ) = block_result.response_matrix_
->operator()( block_rb, block_tb );
}
for ( int block_tb2 = 0; block_tb2 < num_block_true_bins; ++block_tb2 ) {
// Convert the current true bin index at the block level to the one
// at the global level
int tb2 = block_bins.true_bin_indices_.at( block_tb2 );
// Copy the additional smearing matrix element from the current block
add_smear->operator()( tb, tb2 ) = block_result.add_smear_matrix_
->operator()( block_tb, block_tb2 );
}
}
} // block loop
// All that remains is to propagate the full covariance matrix on the
// measurement through the unfolding procedure. Do that transformation
// using the measurement error propagation matrix built from all of the
// blocks.
TMatrixD err_prop_tr( TMatrixD::kTransposed, *err_prop );
TMatrixD temp_mat( data_covmat, TMatrixD::EMatrixCreatorsOp2::kMult,
err_prop_tr );
auto* unfolded_signal_covmat = new TMatrixD( *err_prop,
TMatrixD::EMatrixCreatorsOp2::kMult, temp_mat );
UnfoldedMeasurement result( unfolded_signal, unfolded_signal_covmat,
unfold_mat, err_prop, add_smear, resp_mat );
return result;
}