-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_mtl.py
216 lines (183 loc) · 7.32 KB
/
train_mtl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import copy
import torch
import torch.optim as optim
from fastNLP import logger
from src.models import get_model
from src import utils
from src.trainer import get_trainer_cls
def load_masks(masks_dir):
masks_path = [
os.path.join(masks_dir, f)
for f in os.listdir(masks_dir)
if not f.startswith("init")
]
masks_path = list(
sorted(
filter(lambda f: os.path.isfile(f), masks_path),
key=lambda s: int(os.path.basename(s).split("_")[0]),
)
)
masks = []
logger.info("loading masks")
for path in masks_path:
dump = torch.load(path, "cpu")
assert "mask" in dump and "pruning_time" in dump
logger.info(
"loading pruning_time {}, mask in {}".format(dump["pruning_time"], path)
)
masks.append(dump["mask"])
# sanity check
assert len(masks) == len(masks_path)
for mi in masks:
for name, m in mi.items():
assert isinstance(m, torch.Tensor)
mi[name] = m.bool()
return masks
def load_weights(weights_dir):
return torch.load(os.path.join(weights_dir, "init_weights"), map_location="cpu")
def check_masks(masks, weights):
for mask_i in masks:
for name, m in mask_i.items():
assert name in weights
assert weights[name].shape == m.shape
class MTL_Masker:
def __init__(self, model, masks):
self.model = model
self.masks = masks
self.weights = []
if self.masks is None:
mask = {}
for name, param in self.model.named_parameters():
m = torch.zeros_like(param.data).bool()
mask[name] = m
self.masks = mask
logger.info("has masks %d, %s", len(self.masks), type(self.masks))
def to(self, device):
# logger.info(type(self.model), type(self.masks), device)
logger.info("model to %s", device)
self.model.to(device)
if self.masks is None:
return
if isinstance(self.masks, dict):
masks = [self.masks]
else:
masks = self.masks
for i, mask in enumerate(masks):
logger.info("mask {} to {}".format(i, device))
for name, m in mask.items():
mask[name] = m.to(device)
def before_forward(self, task_id):
# backup weights
self.weights.append(copy.deepcopy(self.model.state_dict()))
# apply mask to param
self.apply_mask(task_id)
def after_forward(self, task_id):
# resume weights
weights = self.weights.pop()
self.model.load_state_dict(weights)
# apply mask to grad
self.mask_grad(task_id)
def apply_mask(self, task_id):
if isinstance(self.masks, dict):
mask = self.masks
else:
mask = self.masks[task_id]
for name, param in self.model.named_parameters():
if name in mask:
param.data.masked_fill_(mask[name], 0.0)
def mask_grad(self, task_id):
# zero-out all the gradients corresponding to the pruned connections
if isinstance(self.masks, dict):
mask = self.masks
else:
mask = self.masks[task_id]
for name, p in self.model.named_parameters():
if name in mask and p.grad is not None:
p.grad.data.masked_fill_(mask[name], 0.0)
if __name__ == "__main__":
parser = utils.get_default_parser()
# fmt: off
parser.add_argument("--masks_path", type=str, default=None, help='the task specific mask paths')
parser.add_argument("--tasks", type=str, default=None, help='the task ids for MTL, default using all tasks')
parser.add_argument("--trainer", type=str, choices=['re-seq-label', 'seq-label'], default='seq-label', help='the trainer type')
# fmt: on
args = parser.parse_args()
utils.init_prog(args)
logger.info(args)
torch.save(args, os.path.join(args.save_path, "args.th"))
n_gpu = torch.cuda.device_count()
print("# of gpu: {}".format(n_gpu))
logger.info("========== Loading Datasets ==========")
task_lst, vocabs = utils.get_data(args.data_path)
if args.tasks is not None:
args.tasks = list(map(int, map(lambda s: s.strip(), args.tasks.split(","))))
logger.info("activate tasks %s", args.tasks)
logger.info("# of Tasks: {}.".format(len(task_lst)))
for task in task_lst:
logger.info("Task {}: {}".format(task.task_id, task.task_name))
for task in task_lst:
if args.debug:
task.train_set = task.train_set[:200]
task.dev_set = task.dev_set[:200]
task.test_set = task.test_set[:3200]
args.epochs = 3
task.init_data_loader(args.batch_size)
logger.info("done.")
model_descript = args.exp_name
# print('====== Loading Word Embedding =======')
logger.info("========== Preparing Model ==========")
n_class_per_task = []
for task in task_lst:
n_class_per_task.append(len(vocabs[task.task_name]))
logger.info("n_class %s", n_class_per_task)
model = get_model(args, task_lst, vocabs)
if args.masks_path is None:
masks = None
else:
masks = load_masks(args.masks_path)
if args.init_weights is not None:
utils.load_model(model, args.init_weights)
elif args.masks_path is not None:
utils.load_model(model, os.path.join(args.masks_path, "init_weights"))
masker = MTL_Masker(model, masks)
logger.info("Model parameters:")
params = list(model.named_parameters())
sum_param = 0
for name, param in params:
if param.requires_grad:
logger.info("{}: {}".format(name, param.shape))
sum_param += param.numel()
logger.info("# Parameters: {}.".format(sum_param))
masker.to("cuda" if torch.cuda.is_available() else "cpu")
Trainer = get_trainer_cls(args)
if not args.evaluate:
logger.info("========== Training Model ==========")
base_params = filter(lambda p: p.requires_grad, model.parameters())
opt = utils.get_optim(args.optim, base_params)
logger.info(opt)
trainer = Trainer(masker, task_lst, vocabs, opt, args)
trainer.train(args.epochs)
logger.info("========== Testing Model ==========")
trainer.model = utils.load_model(model, os.path.join(args.save_path, "best.th"))
test_loss, test_acc = trainer._eval_epoch(dev=False)
logger.info(args.exp_name)
for acc in test_acc.items():
logger.info(acc)
else:
logger.info("========== Evaluating Model ==========")
trainer = Trainer(masker, task_lst, vocabs, None, args)
model_paths = os.listdir(os.path.join(args.save_path, "models"))
model_paths = [os.path.join(args.save_path, "models", p) for p in model_paths]
best_acc = (-1, 0)
logger.info(args.exp_name)
for i, path in enumerate(model_paths):
trainer.masker.model = utils.load_model(model, path)
test_loss, test_acc = trainer._eval_epoch(dev=False)
logger.info("at epoch [%d]", i)
for acc in test_acc.items():
logger.info(acc)
if acc[0] == "avg" and acc[1] > best_acc[1]:
logger.info("update best!")
best_acc = (i, acc[1])
logger.info("best at epoch [%d], avg %f", best_acc[0], best_acc[1])