-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdemo.m
37 lines (35 loc) · 1.05 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
clear
addpath ./util
% some parameters and dataset
datasets = {'mirflickr'};
reduction_rate = 0.8;
alpha = 2.0;
missing_rate = 0;
eta0 = 1e-4;
maxepoch = 50;
hiddentype = 'leaky_relu';
decay = 0.98;
momentum = 0.99;
l2penalty = 1e-3;
for z = 1:length(datasets)
dataset = datasets{z};
load(dataset);
X2a = X2;
XV2a = XV2;
addpath ./deepnet/
batchsize = 500;
for i = 1:length(reduction_rate)
K = round(size(X2, 2) * reduction_rate(i));
NN1 = [512 512 K];
NN2 = [512 K];
for j = 1:length(alpha)
for k = 1:length(missing_rate)
[X2, XV2, ~, ~] = missing(X2a, XV2a, missing_rate(k));
[X2, XV2] = normalize(X2, XV2);
[F1opt,F2opt,F3opt,F4opt]=DCCAtrain_SGD(X1,X2,XV1,XV2,[],[],K,hiddentype,NN1,NN2,0,0,l2penalty,batchsize,eta0,alpha(j),decay,momentum,maxepoch,0);
Fopt=[F1opt,F4opt];
save_result(round(deepnetfwd(XTe1,Fopt)),XTe2,dataset,reduction_rate(i),alpha(j),missing_rate(k));
end
end
end
end