-
Notifications
You must be signed in to change notification settings - Fork 1
/
tes6.py
245 lines (216 loc) · 9.03 KB
/
tes6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.model_selection import validation_curve
from sklearn import svm
import os
os.chdir(r'D:\tesseractocr\checkcode')
class open_deal_image:
'''
open_image:提供一个打开图片并且灰度化的方法
image_two_deal:提供一个将图片二值化的方法
image_noise_deal:提供一个将图片去除噪音的方法
get_start_index_deal :返回第一个数字的位置
get_end_index_deal :返回最后一个数字的位置
split_one_deal:分割验证码的方法
split_two_deal:细分割
add_char_deal:提供一个将分割的图片补全的方法'''
def open_image(self, image_add):
image = Image.open(image_add).convert('L')
return image
def image_two_deal(self, image):
image_np = np.array(image)
rows, cols = image_np.shape
for i in range(rows):
for j in range(cols):
if (image_np[i, j] <= 128):
image_np[i, j] = 0
else:
image_np[i, j] = 1
return image_np
def image_noise_deal(self, image_np):
rows, cols = image_np.shape
for i in range(1, rows - 1):
for j in range(1, cols - 1):
num = 0
if image_np[i - 1, j]: num += 1
if image_np[i + 1, j]: num += 1
if image_np[i, j - 1]: num += 1
if image_np[i, j + 1]: num += 1
if num >= 3:
image_np[i, j] = 1
return image_np
def get_start_index_deal(self, image_np):
self.image_np_var = image_np.var(axis=0)
for i in range(1, len(self.image_np_var) - 1):
if self.image_np_var[i] != self.image_np_var[i - 1]:
return i - 1
def get_end_index_deal(self, image_np):
for i in range(len(self.image_np_var) - 1, 0, -1):
if self.image_np_var[i] != self.image_np_var[i - 1]:
return i + 1
def split_one_deal(self, start_num, end_num, image_np):
image_np_var_deal = self.image_np_var[start_num: end_num]
var_deal, every_length, image_np_deal_list = [], [], []
image_np_deal = image_np[:, start_num:end_num]
number = 0
for i in range(len(image_np_var_deal)):
if image_np_var_deal[i] == 0:
if image_np_var_deal[i - 1] != 0:
var_deal.append(image_np_var_deal[number + 1:i])
image_np_deal_list.append(image_np_deal[:, number + 1:i])
every_length.append(i - number - 1)
number = i
else:
number = i
return image_np_deal_list, every_length
def split_two_deal(self, image_np_deal_list, every_length):
g = image_np_deal_list
d = every_length
if len(d) < 4:
leaveout = 4 - len(d)
if leaveout == 1:
max_index = d.index(max(d))
one, two = np.array_split(g[max_index], 2, axis=1)
g.pop(max_index)
g.insert(max_index, two)
g.insert(max_index, one)
if leaveout == 3:
result = np.array_split(g[0], 4, axis=1)
g.pop()
g.extend(result)
if leaveout == 2:
if 0.4 < d[0] / d[1] < 2.5:
one, two = np.array_split(g[0], 2, axis=1)
three, four = np.array_split(g[1], 2, axis=1)
g = [one, two, three, four]
else:
max_index = d.index(max(d))
one, two, three = np.array_split(g[max_index], 3, axis=1)
g.pop(max_index)
g.insert(max_index, three)
g.insert(max_index, two)
g.insert(max_index, one)
elif len(d) > 4:
for i, j in enumerate(d):
if j == 1:
g.pop(i)
elif len(d) == 4:
for i, j in enumerate(d):
if j == 1:
g.pop(i)
d.pop(i)
return self.split_two_deal(g, d)
return g
def _split_checkcode(self, one):
for i in range(18 - one.shape[1]):
if i % 2:
one = np.hstack((np.array([1] * 27)[:, np.newaxis], one))
else:
one = np.hstack((one, np.array([1] * 27)[:, np.newaxis]))
one = one.ravel()[np.newaxis, :]
return one
def add_char_deal(self, g):
new_g = [self._split_checkcode(i) for i in g]
return np.vstack(new_g)
# 给个处理好的图片的矩阵存在x
x = []
for i in range(180):
a = open_deal_image()
add = str(i) + '.gif'
image = a.open_image(add)
image_np = a.image_two_deal(image)
image_np = a.image_noise_deal(image_np)
start_num = a.get_start_index_deal(image_np)
end_num = a.get_end_index_deal(image_np)
image_np_deal_list, every_length = a.split_one_deal(start_num, end_num, image_np)
g = a.split_two_deal(image_np_deal_list, every_length)
x.append(a.add_char_deal(g))
x = np.vstack([x[i] for i in range(180)])
# 打开验证码的答案
class_ = list('0123456789abcdefghijklmnopqrstuvwxyz')
y_class = {i: class_[i] for i in range(36)}
y_class2 = {class_[i]: i for i in range(36)}
str1 = ''
with open('checkcode.txt', 'r') as f:
for i in f.readlines():
str1 += i
y = str1.replace('\n', '')
new_yy = [y_class2[i] for i in y]
# 验证曲线
param_name = 'C'
param_range = np.logspace(-2, 2)
train_scores, test_scores = validation_curve(svm.SVC(gamma=0.001), x, np.array(new_yy),
param_name=param_name, param_range=param_range, cv=10)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.semilogx(param_range, train_scores_mean, label='train', color='r')
ax.fill_between(param_range, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.2, color='r')
ax.semilogx(param_range, test_scores_mean, label='test', color='g')
ax.fill_between(param_range, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.2, color='g')
ax.legend(loc='best')
plt.show()
param_name = 'gamma'
param_range = np.linspace(0, 1)
train_scores, test_scores = validation_curve(svm.SVC(C=100), x, np.array(new_yy),
param_name=param_name, param_range=param_range, cv=10)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(param_range, train_scores_mean, label='train', color='r')
ax.fill_between(param_range, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.2, color='r')
ax.plot(param_range, test_scores_mean, label='test', color='g')
ax.fill_between(param_range, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.2, color='g')
ax.legend(loc='best')
plt.show()
# 学习曲线
from sklearn.model_selection import learning_curve
train_sizes = np.linspace(0.1, 1.0, endpoint=True, dtype='float')
abs_train_sizes, train_scores, test_scores = learning_curve(svm.SVC(gamma=0.001, C=100), x, np.array(new_yy), cv=10,
train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(abs_train_sizes, train_scores_mean, label='train', color='r')
ax.fill_between(abs_train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.2, color='r')
ax.plot(abs_train_sizes, test_scores_mean, label='test', color='g')
ax.fill_between(abs_train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.2, color='g')
ax.set_xlim(0, 1000)
ax.legend(loc='best')
plt.show()
# 通过上面的图确定的系数
def modtrain(a, new_yy, i):
svc = svm.SVC(gamma=0.001, C=100)
svc.fit(a[:i * 4], np.array(new_yy[:i * 4]))
# print(svc.score(a[:i*4],np.array(new_yy[:i*4])))
print(svc.score(a[i * 4:], np.array(new_yy[i * 4:])))
y_predict = svc.predict(a[i * 4:])
y_true = np.array(new_yy[i * 4:])
return y_predict, y_true
y_predict, y_true = modtrain(x, new_yy, 140)
y_predict_class = [y_class[i] for i in y_predict]
y_true_class = [y_class[i] for i in y_true]
result_char = ''.join(y_predict_class)
true_char = ''.join(y_true_class)
count = 0
for i in range(0, 160, 4):
if result_char[i:i + 4] == true_char[i:i + 4]:
count += 1
print(count)
print(count / 40)