-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen_batch_inputs.m
36 lines (32 loc) · 1.14 KB
/
gen_batch_inputs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
clear_custom
filename = 'data/disparity_sim4.mat' ;
n_runs = 100 ;
load(filename)
for n = 1:n_runs
disp(n)
Z1 = {} ; Z2 = {} ;
for k = 1:n_steps
target_states = reshape(true_traj(:,k,:),6,n_targets) ;
idx_exist = ~isnan(target_states(1,:)) ;
target_states = target_states(1:3,idx_exist) ;
if numel(target_states) > 0
Z1{k} = measurement_model.computeNoisyMeasurement(target_states,campose_1) ;
Z2{k} = measurement_model.computeNoisyMeasurement(target_states,cam_traj(1:6,k)) ;
if (always_visible)
visible1 = measurement_model.checkInRange(target_states,campose_1) ;
visible2 = measurement_model.checkInRange(target_states,cam_traj(1:6,k)) ;
if (~all(visible1) || ~all(visible2))
good_trajectory = false ;
break
end
end
else
Z1{k} = [] ;
Z2{k} = [] ;
end
end
batchdir = ['data/batch/',num2str(n)] ;
mkdir(batchdir) ;
batch_filename = [batchdir,filesep,'/data.mat'] ;
save(batch_filename) ;
end