-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathknn_crossval.py
189 lines (165 loc) · 9.29 KB
/
knn_crossval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
import argparse, itertools, sys
sys.path.append("../lib")
from uriel_lib_data2 import *
from uriel_lib_distance import *
from uriel_lib_predict import *
from sklearn import cross_validation
from sklearn.ensemble import BaggingClassifier
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
def run(inputFilename, metricFilename, cv=3, neighbors=10,
threshold=1.0, gene_coeff=1, gene_exp=1, geo_coeff=1, geo_exp=1,
feat_coeff=1, feat_exp=1, verbose=0, limit=-1, labeled=0, jobs=1, weighted=True, algorithm="knn", prefix=""):
if verbose:
print("Running " + repr(cv) + "-fold cross-validation:")
if algorithm == "knn":
print(" algorithm = knn")
print(" neighbors = " + repr(neighbors))
print(" distance threshold = " + repr(threshold))
print(" gene_coeff = " + repr(gene_coeff))
print(" gene_exp = " + repr(gene_exp))
print(" geo_ceff = " + repr(geo_coeff))
print(" geo_exp = " + repr(geo_exp))
print(" feat_coeff = " + repr(feat_coeff))
print(" feat_exp = " + repr(feat_exp))
print(" weighted = " + repr(weighted))
elif algorithm == "random":
print(" algorithm = random")
elif algorithm == "zero":
print(" algorithm = zero")
elif algorithm == "majority":
print(" algorithm = majority")
print("Loading feature dataset")
inputDataset = Dataset()
inputDataset.loadFromNPZ(inputFilename)
inputFeatureList = inputDataset.getFeatureList()
# pick out the features of interest
inputFeatureList = [((l,f,s),v) for ((l,f,s),v) in inputFeatureList if f.startswith(prefix)]
if limit > 0:
inputFeatureList = inputFeatureList[:limit]
print("Using " + repr(len(inputFeatureList)) + " features")
np.random.shuffle(inputFeatureList)
inputData, inputTarget = zip(*inputFeatureList)
inputData = np.array(inputData)
inputTarget = np.array(inputTarget)
if verbose:
print("Making classifier")
if algorithm == 'knn':
distanceDataset = DistanceDataset()
distanceDataset.loadFromNPZ(metricFilename)
rc = GeoMetricKNNClassifier(distanceDataset, k=neighbors, threshold=threshold, verbose=verbose,
gene_coeff=gene_coeff, gene_exp=gene_exp, geo_coeff=geo_coeff, geo_exp=geo_exp, weighted=weighted)
elif algorithm == 'baggingKNN':
distanceDataset = DistanceDataset()
distanceDataset.loadFromNPZ(metricFilename)
rc = GeoMetricKNNClassifier(distanceDataset, k=neighbors, threshold=threshold, verbose=verbose,
gene_coeff=gene_coeff, gene_exp=gene_exp, geo_coeff=geo_coeff, geo_exp=geo_exp, weighted=weighted)
rc = BaggingClassifier(rc, n_estimators=3, bootstrap=False)
elif algorithm == 'random':
rc = RandomClassifier()
elif algorithm == 'majority':
rc = AverageClassifier()
elif algorithm == 'zero':
rc = ZeroClassifier()
elif algorithm == 'als':
geocoordDataset = Dataset()
geocoordDataset.loadFromNPZ("../../../data/results/geodata/geocoord_features.npz")
rc = MatrixFactorClassifier(algorithm='als',additionalDatasets=[])
elif algorithm == 'svd':
rc = MatrixFactorClassifier(algorithm='svd')
elif algorithm == "featureKNNdivided":
rc = DividedFeatureMetricKNNClassifier(k=neighbors, threshold=threshold, verbose=verbose, weighted=weighted)
elif algorithm == "featureKNN":
rc = FeatureMetricKNNClassifier(k=neighbors, threshold=threshold, verbose=verbose, weighted=weighted)
elif algorithm == "KNNdivided":
distanceDataset = DistanceDataset()
distanceDataset.loadFromNPZ(metricFilename)
rc = DividedKNNClassifier(distanceDataset, k=neighbors, threshold=threshold, verbose=verbose,
gene_coeff=gene_coeff, gene_exp=gene_exp,
geo_coeff=geo_coeff, geo_exp=geo_exp,
feat_coeff=feat_coeff, feat_exp=feat_exp,
weighted=weighted)
elif algorithm == "ensemble":
distanceDataset = DistanceDataset()
distanceDataset.loadFromNPZ(metricFilename)
rc = EnsembleClassifier()
c = SavedMetricKNNClassifier(distanceDataset, "GENETIC", k=neighbors, threshold=threshold, verbose=verbose, weighted=weighted)
rc.addClassifier(c)
c = SavedMetricKNNClassifier(distanceDataset, "GEOGRAPHIC", k=neighbors, threshold=threshold, verbose=verbose, weighted=weighted)
rc.addClassifier(c)
c = DividedFeatureMetricKNNClassifier(k=neighbors, threshold=threshold, verbose=verbose, weighted=weighted)
#c = DividedFeatureMetricKNNClassifier(k=neighbors, threshold=threshold, verbose=verbose, weighted=weighted)
rc.addClassifier(c)
#c = MatrixFactorClassifier(algorithm='als')
#rc.addClassifier(c)
else:
sys.exit("ERROR: No algorithm named " + algorithm)
if verbose:
print("Cross validating")
if labeled:
labels = [ inputDataset.languageCodes.index(l) for l,_,_ in inputData ]
kf = cross_validation.LabelKFold(labels, n_folds=cv)
else:
kf = cross_validation.KFold(len(inputData), n_folds=cv)
scores = cross_validation.cross_val_score(rc, inputData, inputTarget, cv=kf, scoring="accuracy", n_jobs=jobs, verbose=verbose)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean()*100, scores.std() * 2 * 100))
defaults = {
"inputFile" : "../../../data/results/features/features.npz",
"metricFile" : "../../../data/results/distances/distances.npz",
"cv" : "10",
"neighbors" : "10",
"threshold" : "1.0",
"gene_coeff" : "1",
"gene_exp" : "1",
"geo_coeff" : "1",
"geo_exp" : "1",
"feat_coeff" : "1",
"feat_exp" : "1",
"verbose" : "2",
"limit" : "-1",
"labeled" : "0",
"jobs" : "1",
"prefix" : ""
}
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument("--inputFile", nargs='?', default=[defaults["inputFile"]], help="The CSV file containing the input data.")
argparser.add_argument("--metricFile", nargs='?', default=[defaults["metricFile"]], help="The CSV file containing the metric data.")
argparser.add_argument("--cv", nargs='?', default=defaults["cv"], help="The number of folds for k-fold cross-validation.")
argparser.add_argument("--neighbors", nargs="?", default=defaults["neighbors"], help="The number of neighbors to consider for kNN classification.")
argparser.add_argument("--threshold", nargs="?", default=defaults["threshold"], help="A distance threshold beyond which neighbors will not be considered.")
argparser.add_argument("--gene_coeff", nargs="?", default=defaults["gene_coeff"], help="The coefficient of the genetic distance measure.")
argparser.add_argument("--gene_exp", nargs="?", default=defaults["gene_exp"], help="The exponent of the genetic distance measure.")
argparser.add_argument("--geo_coeff", nargs="?", default=defaults["geo_coeff"], help="The coefficient of the geographic distance measure.")
argparser.add_argument("--geo_exp", nargs="?", default=defaults["geo_exp"], help="The exponent of the geographic distance measure.")
argparser.add_argument("--feat_coeff", nargs="?", default=defaults["feat_coeff"], help="The coefficient of the featural distance measure.")
argparser.add_argument("--feat_exp", nargs="?", default=defaults["feat_exp"], help="The exponent of the featural distance measure.")
argparser.add_argument("--verbose", nargs="?", default=defaults["verbose"], help="How verbose to be; higher numbers are more messages.")
argparser.add_argument("--limit", nargs="?", default=defaults["limit"], help="For testing, limit dataset to this number of observations; <= 0 gives all values.")
argparser.add_argument("--labeled", nargs="?", default=defaults["labeled"], help="If > 0, no data from the same language will be in both testing and training set.")
argparser.add_argument("--jobs", nargs="?", default=defaults["jobs"], help="The number of CPUs to use.")
argparser.add_argument("--weighted", dest="weighting", action="store_true")
argparser.add_argument("--unweighted", dest="weighting", action="store_false")
argparser.add_argument("--algorithm", nargs="?", default="knn", help="knn, random, zero, or majority")
argparser.add_argument("--prefix", nargs="?", default=defaults["prefix"])
argparser.set_defaults(weighting=True)
args = argparser.parse_args()
run(args.inputFile[0],
args.metricFile[0],
cv=int(args.cv),
neighbors=int(args.neighbors),
threshold=float(args.threshold),
gene_coeff=float(args.gene_coeff),
gene_exp=float(args.gene_exp),
geo_coeff=float(args.geo_coeff),
geo_exp=float(args.geo_exp),
feat_coeff=float(args.feat_coeff),
feat_exp=float(args.feat_exp),
verbose=int(args.verbose),
limit=int(args.limit),
labeled=int(args.labeled),
jobs=int(args.jobs),
weighted=args.weighting,
algorithm=args.algorithm,
prefix=args.prefix)