-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclassify.py
228 lines (184 loc) · 8.29 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import print_function, division
from sklearn import preprocessing, neighbors, linear_model, multioutput
from sklearn.utils import shuffle
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import cross_val_score
import argparse
import numpy as np
import lang2vec
import os, sys, csv
import pickle
# Load features from URIEL
#all_feat_avgs = np.load("feature_averages.npz")
#lang_codes = list(all_feat_avgs["langs"])
parser = argparse.ArgumentParser()
parser.add_argument("--random", action='store_true')
parser.add_argument("--majority", action='store_true')
parser.add_argument("--family", action='store_true')
parser.add_argument("--results_path", default="syntax_avg_new.csv", type=str)
parser.add_argument("--bible_langs_path", default="bible_langs.txt", type=str)
args = parser.parse_args()
with open(args.bible_langs_path) as f:
lines = f.readlines()
lang_codes = sorted([line.strip()[-3:] for line in lines])
#Pick feature class
feat_name = "phonology_average"
typ_feats, typ_feat_names = lang2vec.get(" ".join(lang_codes), feat_name)
syntax_avg, syntax_avg_feat_names = lang2vec.get(" ".join(lang_codes), "syntax_average")
phonology_avg, phonology_avg_feat_names = lang2vec.get(" ".join(lang_codes), "phonology_average")
inventory_avg, inventory_avg_feat_names = lang2vec.get(" ".join(lang_codes), "inventory_average")
syntax_knn, syntax_knn_feat_names = lang2vec.get(" ".join(lang_codes), "syntax_knn")
phonology_knn, phonology_knn_feat_names = lang2vec.get(" ".join(lang_codes), "phonology_knn")
inventory_knn, inventory_knn_feat_names = lang2vec.get(" ".join(lang_codes), "inventory_knn")
geog, geog_feat_names = lang2vec.get(" ".join(lang_codes), "geo")
fam, fam_feat_names = lang2vec.get(" ".join(lang_codes), "fam")
# Load language vectors
lang_vecs = np.load("lang_vecs_bible.npy").item()
cell_state_values = np.load("langs_orig_mod_cell.npy").item()
# Get kNN results
geogen = []
geogen_feats = {}
with open("chaitanya-extract/result/geogen-3.csv") as f:
reader = csv.reader(f)
for row in reader:
geogen.append(row)
for g in geogen[1:]:
geogen_feats[g[0]] = [float(elem) for elem in g[1:]]
# Find responsible hidden node
#print(syntax_avg_feat_names)
#idx = np.where(syntax_avg_feat_names=="S_OBJECT_AFTER_VERB")[0][0]
#print(idx)
logreg_scores = []
nn_scores = []
random_scores = []
scores = []
scores_ref = []
iterate = typ_feats['fra'].shape[0]
all_preds = []
all_refs = []
all_randoms = []
for feat in range(iterate):
scores_dict = {}
scores_dict_ref = {}
preds = []
refs = []
# Find langs for which feat exists
f = np.asarray([l[1][feat] for l in sorted(typ_feats.items())])
lang_indices = np.where(f!=-1)
feat_langs = [lang_codes[l] for l in list(lang_indices[0])]
if len(feat_langs)==0:
print("No languages contain a value for feature %s. Skipping..." % typ_feat_names[feat])
continue
# Create feature combinations
#X_train = np.zeros((len(feat_langs), 512+len(geogen_feats['fra'])))
#X_train = np.zeros((len(feat_langs), 1024+len(geo['fra'])))
#X_train = np.zeros((len(feat_langs), 1024))
#X_train = np.zeros((len(feat_langs), len(geo_feats['fra'])))
X_train = np.zeros((len(feat_langs), 1024 + 512 + len(geogen_feats['fra'])))
#X_train = np.zeros((len(feat_langs), len(geogen_feats['fra'])))
#X_train = np.zeros((len(feat_langs), 512))
#X_train = np.zeros((len(feat_langs), 512+1024))
#X_train = np.zeros((len(feat_langs), 1024+len(geogen_feats['fra'])))
y_train = np.zeros((len(feat_langs)))
for i,l in enumerate(list(lang_indices[0]), start=0):
y_train[i] = f[l]
#X_train[i] = lang_vecs['optsrc'+lang_codes[l]]
#X_train[i] = np.concatenate((lang_vecs['optsrc'+lang_codes[l]],geogen_feats[lang_codes[l]]), axis=0)
#X_train[i] = cell_state_values[lang_codes[l]][1]
#X_train[i] = np.concatenate((cell_state_values[lang_codes[l]][0], geog[lang_codes[l]]), axis=0)
#X_train[i] = geo_feats[lang_codes[l]]
#X_train[i] = np.concatenate((cell_state_values[lang_codes[l]][0], geogen_feats[lang_codes[l]]))
#X_train[i] = np.concatenate((cell_state_values[lang_codes[l]][0], lang_vecs['optsrc'+lang_codes[l]]), axis=0)
X_train[i] = np.concatenate((cell_state_values[lang_codes[l]][0], lang_vecs['optsrc'+lang_codes[l]], geogen_feats[lang_codes[l]]), axis=0)
#X_train, y_train = shuffle(X_train, y_train)
lab_enc = preprocessing.LabelEncoder()
y_train = lab_enc.fit_transform(y_train)
X_test = X_train[int(len(feat_langs)*.8):]
y_test = y_train[int(len(feat_langs)*.8):]
X_train_f = X_train[:int(len(feat_langs)*.8)]
y_train_f = y_train[:int(len(feat_langs)*.8)]
# Get random classifier results
if args.random:
cv_scores = []
for i in range(10):
#X_train, y_train = shuffle(X_train, y_train)
y_test = y_train[int(len(feat_langs)*.8):]
y_train_f = y_train[:int(len(feat_langs)*.8)]
counts = np.bincount(y_train_f)
y_major = np.argmax(counts)
if np.bincount(y_test).shape[0] > y_major:
cv_scores.append(np.bincount(y_test)[y_major]/y_test.shape[0])
#print("Random score for feature:", sum(cv_scores[:-1])/len(cv_scores))
scores_dict['feature'] = typ_feat_names[feat]
scores_dict['random_score'] = sum(cv_scores[:-1])/len(cv_scores)
scores.append(scores_dict)
random_scores.append(scores_dict['random_score'])
continue
if np.all(y_train==1.0) or np.all(y_train==0.0):
print("Feature %s has only one class!" % typ_feat_names[feat])
logreg_scores.append(1.0)
nn_scores.append(1.0)
scores_dict['feature'] = typ_feat_names[feat]
scores_dict['logreg_score'] = 1.0
scores_dict['nn_score'] = 1.0
scores.append(scores_dict)
continue
## Postprocessing to handle missing features
logistic = linear_model.LogisticRegression(C=2.0)
#mul_out = multioutput.MultiOutputClassifier(logistic)
try:
y = logistic.fit(X_train_f, y_train_f).predict(X_test)
counts = np.bincount(y_train_f)
y_major = np.argmax(counts)
all_randoms.append([y_major]*len(y_test))
except: continue
#correct_langs = [(feat_langs[i],y[i]) for i in range(len(y)) if y[i]==y_test[i]]
#print(correct_langs)
lr_score = [logistic.fit(X_train_f, y_train_f).score(X_test, y_test)]
try: lr_score = cross_val_score(logistic, X=X_train, y=y_train, cv=10)
except: continue
print("\nLogReg score for feature %s is: %f (+/- %0.2f)" % (typ_feat_names[feat], lr_score.mean(), lr_score.std()))
logreg_scores.append(lr_score.mean())
#logreg_scores.append(lr_score)
#best_nodes = [logistic.coef_[i].argsort()[-1:][::-1] for i in range(logistic.coef_.shape[0])]
#print(best_nodes)
#NN classifier
nn = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
nn_score = nn.fit(X_train, y_train).score(X_test, y_test)
nn_score = cross_val_score(nn, X=X_train, y=y_train, cv=10)
#except: continue
print("NN score for feature %s is: %f" % (typ_feat_names[feat], sum(nn_score)/len(nn_score)))
nn_scores.append(nn_score.mean())
#Append scores to dict for writing to file
scores_dict['feature'] = typ_feat_names[feat]
test_lang_idx = int(len(feat_langs)*.8)
for k,lang in enumerate(feat_langs[test_lang_idx:]):
scores_dict[lang] = y[k]
scores_dict_ref[lang] = y_test[k]
preds.append(y[k])
refs.append(y_test[k])
all_preds.append(preds)
all_refs.append(refs)
#scores_dict['logreg_score'] = lr_score
scores_dict['logreg_score'] = lr_score.mean()
scores_dict['nn_score'] = nn_score.mean()
scores.append(scores_dict)
scores_ref.append(scores_dict_ref)
# Print accuracy
if not args.random:
print("\nAverage accuracy using LogReg:",sum(logreg_scores)/len(logreg_scores))
print("Average accuracy using NN:",sum(nn_scores)/len(nn_scores))
else:
print("\nAverage accuracy using a random classifier:",sum(random_scores)/len(random_scores))
with open('syntax_avg_lang_knn-3', 'wb') as fp:
pickle.dump(all_preds, fp)
with open('syntax_avg_lang_refs', 'wb') as fp:
pickle.dump(all_refs, fp)
with open('syntax_avg_lang_randoms', 'wb') as fp:
pickle.dump(all_randoms, fp)
keys = scores[0].keys()
with open('syntax_avg_lang_preds.csv', 'w') as output_file:
dict_writer = csv.DictWriter(output_file, keys)
if os.stat('syntax_avg_lang_preds.csv').st_size == 0: dict_writer.writeheader()
dict_writer.writerows(scores)
output_file.write("")