-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_assignment_improved.py
481 lines (355 loc) · 15.6 KB
/
ml_assignment_improved.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
import random
import gdown
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transforms
# set random seed for reproducibility
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, is_last=False):
super(BasicBlock, self).__init__()
self.is_last = is_last
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
class ResNet(nn.Module):
def __init__(self, depth, num_filters, block_name="BasicBlock", num_classes=100):
super(ResNet, self).__init__()
assert (
depth - 2
) % 6 == 0, "When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202"
n = (depth - 2) // 6
block = BasicBlock
self.inplanes = num_filters[0]
self.conv1 = nn.Conv2d(3, num_filters[0], kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(num_filters[0])
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, num_filters[1], n)
self.layer2 = self._make_layer(block, num_filters[2], n, stride=2)
self.layer3 = self._make_layer(block, num_filters[3], n, stride=2)
self.avgpool = nn.AvgPool2d(8)
self.fc = nn.Linear(num_filters[3] * block.expansion, num_classes)
self.stage_channels = num_filters
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = list([])
layers.append(
block(self.inplanes, planes, stride, downsample, is_last=(blocks == 1))
)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, is_last=(i == blocks - 1)))
return nn.Sequential(*layers)
def get_feat_modules(self):
feat_m = nn.ModuleList([])
feat_m.append(self.conv1)
feat_m.append(self.bn1)
feat_m.append(self.relu)
feat_m.append(self.layer1)
feat_m.append(self.layer2)
feat_m.append(self.layer3)
return feat_m
def get_bn_before_relu(self):
bn1 = self.layer1[-1].bn2
bn2 = self.layer2[-1].bn2
bn3 = self.layer3[-1].bn2
return [bn1, bn2, bn3]
def get_stage_channels(self):
return self.stage_channels
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x) # 32x32
f0 = x
x, f1_pre = self.layer1(x) # 32x32
f1 = x
x, f2_pre = self.layer2(x) # 16x16
f2 = x
x, f3_pre = self.layer3(x) # 8x8
f3 = x
x = self.avgpool(x)
avg = x.reshape(x.size(0), -1)
out = self.fc(avg)
return out
def resnet8x4(**kwargs):
return ResNet(8, [32, 64, 128, 256], "basicblock", **kwargs)
def resnet32x4(**kwargs):
return ResNet(32, [32, 64, 128, 256], "basicblock", **kwargs)
class BaseTrainer:
pretrained_teacher_link = 'https://drive.google.com/uc?id=1Gh3Z8BZ62PGD7PQiFiwmU9vMwMpF5F46'
def __init__(self):
self.teacher = resnet32x4(num_classes=100)
self.student = resnet8x4(num_classes=100)
gdown.download(self.pretrained_teacher_link, './resnet_32x4.pth', resume=True)
self.teacher.load_state_dict(torch.load("./resnet_32x4.pth", map_location="cpu")["model"])
self.train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))
])
self.test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))
])
self.train_set = datasets.CIFAR100('./data/', download=True, train=True, transform=self.train_transform)
self.test_set = datasets.CIFAR100('./data/', download=False, train=False, transform=self.test_transform)
self.test_dataloader = DataLoader(self.test_set, batch_size=64, shuffle=False)
def save_student_checkpoint(self, ckpt_path):
state_dict = self.student.state_dict()
torch.save(state_dict, ckpt_path)
def load_student_checkpoint(self, ckpt_path):
state_dict = torch.load(ckpt_path, map_location="cpu")
self.student.load_state_dict(state_dict)
@torch.no_grad()
def evaluate_student(self):
self.student.cuda().eval()
n = 0
correct = 0
for image, target in self.test_dataloader:
image = image.cuda()
target = target.cuda()
output = self.student(image)
n += image.size(0)
correct += output.max(-1).indices.eq(target).sum().item()
accuracy = 100 * correct / n
return accuracy
def train_student(self):
pass
### IMPLEMENT THIS TRAINER CLASS ###
class KDTrainer(BaseTrainer):
def __init__(self):
super().__init__()
### YOU MAY EDIT BELOW ###
self.train_dataloader = DataLoader(self.train_set, batch_size=64, shuffle=True, num_workers=8, drop_last=True)
self.init_lr = 0.2
self.max_epoch = 200
self.optimizer = optim.SGD(self.student.parameters(), lr=self.init_lr, momentum=0.9, weight_decay=1e-4)
## temperature ##
self.T = 30
## alpha ##
self.alpha = 0.5
## best acc
self.best_acc = 0
def train_student(self, model_path): ## added model path to save checkpoint internally
#### IMPLEMENT TRAINING HERE ####
self.teacher.cuda().eval()
self.student.cuda().train()
cl_criterion = nn.CrossEntropyLoss().cuda()
# kd_criterion = nn.KLDivLoss(reduction="batchmean").cuda()
kd_criterion = nn.KLDivLoss(reduction="batchmean")
scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, self.max_epoch)
for epoch in range(self.max_epoch):
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in self.train_dataloader:
self.optimizer.zero_grad()
## classification loss of student
student_outputs = self.student(inputs.cuda())
cl_loss = cl_criterion(student_outputs, labels.cuda())
## knowledge distillation loss
teacher_outputs = self.teacher(inputs.cuda())
kd_loss = kd_criterion(F.log_softmax(student_outputs/self.T, dim=1), F.softmax(teacher_outputs/self.T, dim=1)) * self.T * self.T
## total loss
loss = (1 - self.alpha) * cl_loss + (self.alpha) * kd_loss
## backprop
loss.backward()
self.optimizer.step()
_, pred = torch.max(student_outputs, 1)
total += labels.size(0)
correct += (pred == labels.cuda()).sum().item()
running_loss += loss.item()
loss_ = running_loss / len(self.train_dataloader)
training_acc = (correct / total) * 100
test_acc = self.evaluate_student()
if test_acc > self.best_acc:
self.save_student_checkpoint(model_path)
self.best_acc = test_acc
self.student.cuda().train()
## update LR
scheduler.step()
print(f"Epoch {epoch + 1}/{self.max_epoch}, Loss: {loss_:.2f}, training Acc: {training_acc:.2f}, test Acc: {test_acc:.2f}, best Acc: {self.best_acc:.2f}")
# CKPT_PATH = "./student_checkpoint.pth"
# trainer = KDTrainer()
# trainer.train_student(CKPT_PATH)
# trainer.save_student_checkpoint(CKPT_PATH)
# trainer.load_student_checkpoint(CKPT_PATH)
# accuracy = trainer.evaluate_student()
# print(f"Student model test accuracy: {accuracy:.3f} %")
# print(f"Is above threshold performance? {accuracy > 72.2}")
### IMPLEMENT THIS TRAINER CLASS ###
class ImprovedKDTrainer(BaseTrainer):
def __init__(self):
super().__init__()
### YOU MAY EDIT BELOW ###
## modify models' forward outputs fm
self.teacher = resnetFSP32x4(num_classes=100)
self.student = resnetFSP8x4(num_classes=100)
self.teacher.load_state_dict(torch.load("./resnet_32x4.pth", map_location="cpu")["model"])
self.train_dataloader = DataLoader(self.train_set, batch_size=64, shuffle=True, num_workers=8, drop_last=True)
self.init_lr = 0.2
self.max_epoch = 200
self.optimizer = optim.SGD(self.student.parameters(), lr=self.init_lr, momentum=0.9, weight_decay=1e-4)
## temperature ##
self.T = 30
## alpha ##
self.alpha = 0.5
## best acc
self.best_acc = 0
## number of epochs allowed for FSP
self.epoch_for_fsp = self.max_epoch / 20
@torch.no_grad()
def evaluate_student(self):
self.student.cuda().eval()
n = 0
correct = 0
for image, target in self.test_dataloader:
image = image.cuda()
target = target.cuda()
f0, f1, f2, f3, output = self.student(image)
n += image.size(0)
correct += output.max(-1).indices.eq(target).sum().item()
accuracy = 100 * correct / n
return accuracy
def train_student(self, model_path): ## added model path to save checkpoint internally
#### IMPLEMENT TRAINING HERE ####
self.teacher.cuda().eval()
self.student.cuda().train()
cl_criterion = nn.CrossEntropyLoss().cuda()
kd_criterion = nn.KLDivLoss(reduction="batchmean")
fsp_criterion = self.fsp_loss
scheduler_kd = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, self.epoch_for_fsp)
scheduler_fsp = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, self.max_epoch - self.epoch_for_fsp)
for epoch in range(self.max_epoch):
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in self.train_dataloader:
self.optimizer.zero_grad()
## classification loss of student
f0_s, f1_s, f2_s, f3_s, student_outputs = self.student(inputs.cuda())
cl_loss = cl_criterion(student_outputs, labels.cuda())
## knowledge distillation loss
f0_t, f1_t, f2_t, f3_t, teacher_outputs = self.teacher(inputs.cuda())
if epoch < self.epoch_for_fsp:
## stage 1: initial training for FSP
kd_loss = (fsp_criterion(f0_s, f1_s, f0_t, f1_t) + \
fsp_criterion(f1_s, f2_s, f1_t, f2_t) + \
fsp_criterion(f2_s, f3_s, f2_t, f3_t)) / 3.0
scheduler = scheduler_fsp
else:
## stage 2: training using original KD
kd_loss = kd_criterion(F.log_softmax(student_outputs/self.T, dim=1), F.softmax(teacher_outputs/self.T, dim=1)) * self.T * self.T
scheduler = scheduler_kd
## total loss
loss = (1 - self.alpha) * cl_loss + (self.alpha) * kd_loss
## backprop
loss.backward()
self.optimizer.step()
_, pred = torch.max(student_outputs, 1)
total += labels.size(0)
correct += (pred == labels.cuda()).sum().item()
running_loss += loss.item()
running_loss = running_loss / len(self.train_dataloader)
training_acc = (correct / total) * 100
test_acc = self.evaluate_student()
if test_acc > self.best_acc:
self.save_student_checkpoint(model_path)
self.best_acc = test_acc
self.student.cuda().train()
## update LR
scheduler.step()
print(f"Epoch {epoch + 1}/{self.max_epoch}, Loss: {running_loss:.2f}, training Acc: {training_acc:.2f}, test Acc: {test_acc:.2f}, best Acc: {self.best_acc:.2f}")
def fsp_loss(self, fm_s1, fm_s2, fm_t1, fm_t2):
if fm_s1.size(2) > fm_s2.size(2):
fm_s1 = F.adaptive_avg_pool2d(fm_s1, (fm_s2.size(2), fm_s2.size(3)))
fm_s1 = fm_s1.view(fm_s1.size(0), fm_s1.size(1), -1)
fm_s2 = fm_s2.view(fm_s2.size(0), fm_s2.size(1), -1).transpose(1,2)
fsp_s = torch.bmm(fm_s1, fm_s2) / fm_s1.size(2)
if fm_t1.size(2) > fm_t2.size(2):
fm_t1 = F.adaptive_avg_pool2d(fm_t1, (fm_t2.size(2), fm_t2.size(3)))
fm_t1 = fm_t1.view(fm_t1.size(0), fm_t1.size(1), -1)
fm_t2 = fm_t2.view(fm_t2.size(0), fm_t2.size(1), -1).transpose(1,2)
fsp_t = torch.bmm(fm_t1, fm_t2) / fm_t1.size(2)
return F.mse_loss(fsp_s, fsp_t)
class ResNetFSP(ResNet):
def __init__(self, depth, numfilters, block_name="BasicBlock", num_classes=100):
super().__init__(depth, numfilters, block_name, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x) # 32x32
f0 = x
x, f1_pre = self.layer1(x) # 32x32
f1 = x
x, f2_pre = self.layer2(x) # 16x16
f2 = x
x, f3_pre = self.layer3(x) # 8x8
f3 = x
x = self.avgpool(x)
avg = x.reshape(x.size(0), -1)
out = self.fc(avg)
return f0, f1, f2, f3, out
def resnetFSP8x4(**kwargs):
return ResNetFSP(8, [32, 64, 128, 256], "basicblock", **kwargs)
def resnetFSP32x4(**kwargs):
return ResNetFSP(32, [32, 64, 128, 256], "basicblock", **kwargs)
CKPT_PATH = "./student_improved_checkpoint.pth"
trainer = ImprovedKDTrainer()
# trainer.train_student(CKPT_PATH)
# trainer.save_student_checkpoint(CKPT_PATH)
trainer.load_student_checkpoint(CKPT_PATH)
accuracy = trainer.evaluate_student()
print(f"Improved student model test accuracy: {accuracy:.3f} %")