-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutility.py
770 lines (504 loc) · 34.4 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 26 13:49:20 2023
@author: abhishekh
"""
import pandas as pd
import numpy as np
###### return one sided mannwhitneyu test p value
def man_whiteney(group1, group2):
"""
Perform a one-sided Mann-Whitney U test and return the p-value.
This function compares two independent groups and tests if 'group1' tends to have larger values than 'group2'.
Parameters:
group1 (array-like): The data of the first group.
group2 (array-like): The data of the second group.
Returns:
float: The p-value from the one-sided Mann-Whitney U test.
Notes:
The null hypothesis is that the distribution of 'group1' is not greater than 'group2'.
"""
from scipy.stats import mannwhitneyu
statistic, p_value = mannwhitneyu(group1, group2, alternative='greater', nan_policy = "omit")
return p_value
##### return box plot in median sorted order from low to high
def box_plot(data, x, y, ax, hue = None):
"""
Create a box plot with seaborn.
Parameters:
- data (DataFrame): The input DataFrame containing the data.
- x (str): The variable to be plotted on the x-axis.
- y (str): The variable to be plotted on the y-axis.
- ax (matplotlib.axes._subplots.AxesSubplot): The Matplotlib axes on which to draw the plot.
- hue (str, optional): The variable that defines the subsets of the data, which will be drawn on separate facets in the plot.
Returns:
- ax (matplotlib.axes._subplots.AxesSubplot): The Matplotlib axes on which the box plot is drawn in median sorted order.
"""
import seaborn as sns
median_per_category = data.groupby(x)[y].median().sort_values()
sns.boxplot(x=x, y=y, data=data, hue=hue, boxprops=dict(edgecolor="black", linewidth=0),ax=ax,flierprops=dict(marker='o', markeredgecolor='black'), width=0.4,linewidth=0.5, fliersize=0.15, dodge=True, order=median_per_category.index, medianprops={"color": "black","linewidth":1})
return ax
##### return axis in custom form
def custom_figure_axis(ax, fontsize=10, show_ticks = True, rotation=90):
"""
Customize the appearance of matplotlib axis for a figure.
Parameters:
ax (matplotlib.axes._subplots.AxesSubplot): The axis to be customized.
fontsize (int, optional): Font size for axis labels and ticks. Default is 10.
show_ticks (bool, optional): Whether to display ticks and labels. Default is True.
Returns:
matplotlib.axes._subplots.AxesSubplot: The customized axis.
"""
ax.spines['bottom'].set_color('black')
ax.spines['left'].set_color('black')
ax.spines['top'].set_color('white')
ax.spines['right'].set_color('white')
ax.grid(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['left'].set_linewidth(0.5)
ax.tick_params(axis='x', labelsize=fontsize, rotation=rotation)
ax.tick_params(axis='y', labelsize=fontsize)
ax.tick_params(axis='both', which='both', width=0.5)
ax.xaxis.label.set_fontsize(fontsize)
ax.yaxis.label.set_fontsize(fontsize)
if show_ticks==False:
ax.set_xlabel(None)
ax.set_ylabel(None)
ax.set_xticklabels([])
ax.set_yticklabels([])
return ax
##### return_data_quantile_wise
def return_data_quantile_wise(data, column_name):
import numpy as np
data = data.copy()
lst_quantile_dataframe = list() # The list containing dataframe of each quantile of column_name
lst_quantile_dataframe_column_name = list() # The list containing allele series of each quantile
lst_quantile_dataframe_column_name_median = list() # The list containing median of allele series of each quantile
# lst_quantile_accumulated_gain_vs_allele_mean= list()
count = 0
for i in range(20):
if (i==19):
lst_quantile_dataframe.append(data.iloc[data[column_name][(data[column_name] >= data[column_name].quantile(round((count),2))) & (data[column_name] <=data[column_name].quantile(round((count+0.05),2)))].index.tolist()])
lst_quantile_dataframe_column_name.append(np.log10(data.iloc[data[column_name][(data[column_name] >= data[column_name].quantile(round((count),2))) & (data[column_name] <=data[column_name].quantile(round((count+0.05),2)))].index.tolist()]["allele count"]))
lst_quantile_dataframe_column_name_median.append(np.median(np.log10(data.iloc[data[column_name][(data[column_name] >= data[column_name].quantile(round((count),2))) & (data[column_name] <=data[column_name].quantile(round((count+0.05),2)))].index.tolist()]["allele count"])))
# count = count + 0.05
if (i!=19):
lst_quantile_dataframe.append(data.iloc[data[column_name][(data[column_name] >= data[column_name].quantile(round((count),2))) & (data[column_name] <data[column_name].quantile(round((count+0.05),2)))].index.tolist()])
lst_quantile_dataframe_column_name.append(np.log10(data.iloc[data[column_name][(data[column_name] >= data[column_name].quantile(round((count),2))) & (data[column_name] <data[column_name].quantile(round((count+0.05),2)))].index.tolist()]["allele count"]))
lst_quantile_dataframe_column_name_median.append(np.median(np.log10(data.iloc[data[column_name][(data[column_name] >= data[column_name].quantile(round((count),2))) & (data[column_name] <data[column_name].quantile(round((count+0.05),2)))].index.tolist()]["allele count"])))
count = count + 0.05
return lst_quantile_dataframe, lst_quantile_dataframe_column_name, lst_quantile_dataframe_column_name_median
##### return a dataframe with four columns quantile, column_name as provided, accumulate_gain
def return_quantile_wise_allele_count(lst_quantile_dataframe, column_name, ignore_label_column =False):
import pandas as pd
import numpy as np
lst_quantile_dataframe = lst_quantile_dataframe.copy()
quantile_range = ['0-5%', '5-10%', '10-15%', '15-20%', '20-25%', '25-30%', '30-35%', '35-40%', '40-45%', \
'45-50%', '50-55%', '55-60%', '60-65%', '65-70%', '70-75%', '75-80%', '80-85%', '85-90%', \
'90-95%', '95-100%']
df_tmp_full = pd.DataFrame(columns = ["quantile of " + str(column_name), "AC"])
for i in range(len(quantile_range)):
df_tmp = pd.DataFrame(columns = ["quantile of " + str(column_name), "AC"])
df_tmp["AC"] = lst_quantile_dataframe[i]["allele count"]
df_tmp["log10(AC)"] = np.log10(lst_quantile_dataframe[i]["allele count"])
df_tmp[column_name] = lst_quantile_dataframe[i][column_name]
if ignore_label_column==False:
df_tmp["label"] = lst_quantile_dataframe[i]["label"]
df_tmp.loc[:, "quantile of " + str(column_name) ] = quantile_range[i]
df_tmp_full = pd.concat([df_tmp_full, df_tmp])
# print(df_now_new)
return df_tmp_full
"""Plot three subplots for the column name vs generation number for mutator, non mutator amd all"""
def return_mutator_non_mutator_column_name_wise_graph_together(data, mutator_list, non_mutator_list, column_name, fontsize=10):
"""
Plot three subplots for the specified column against generation number for mutator, non-mutator, and the entire population.
Parameters:
data (pd.DataFrame): The input DataFrame containing the data.
mutator_list (list): List of labels for mutator data points.
non_mutator_list (list): List of labels for non-mutator data points.
column_name (str): The column to plot against generation number.
fontsize (int, optional): Font size for plot labels. Defaults to 10.
Returns:
ax (numpy.ndarray): Array of subplot axes.
Notes:
- Requires 'label' and 'generation_number' columns in the input DataFrame.
"""
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
from scipy.stats import spearmanr
import seaborn as sns
data = data.copy();
offset = 0
df_non_mutator_full_mutation_data = data[data['label'].isin(non_mutator_list)]
df_mutator_full_mutation_data = data[data['label'].isin(mutator_list)]
fig, ax = plt.subplots(3, 1 , dpi = 600, figsize = (2.1, 2.1), sharex=True);
sns.lineplot(data = df_mutator_full_mutation_data, x = "generation_number", y=column_name, color="red", lw = 0.25, estimator ="median", ax = ax[0]);
sns.lineplot(data = df_non_mutator_full_mutation_data, x = "generation_number", y=column_name, color="green", lw = 0.25, estimator ="median", ax = ax[1]);
sns.lineplot(data = data, x = "generation_number", y=column_name, color="blue", lw = 0.25, estimator ="median", ax = ax[2]);
# mutator_spearman_corr = "{:.3e}".format(spearmanr(df_mutator_full_mutation_data["generation_number"], df_mutator_full_mutation_data[column_name])[0])
# mutator_spearman_p = "{:.3e}".format(spearmanr(df_mutator_full_mutation_data["generation_number"], df_mutator_full_mutation_data[column_name])[1])
# ax[0].text((max(ax[0].get_xlim()) -100* offset), (max(ax[0].get_ylim()) - offset), "Corr:" + str(mutator_spearman_corr) + "| p- value: " + str(mutator_spearman_p), fontsize=3, color='black', ha='right', va='top')
# print(spearmanr(df_mutator_full_mutation_data["generation_number"], df_mutator_full_mutation_data[column_name]))
# # formatted_corr_all = "{:.2e}".format(df_non_mutator_full_mutation_data["generation_number"].corr(df_non_mutator_full_mutation_data["column_name"]))
# non_mutator_spearman_corr = "{:.3e}".format(spearmanr(df_non_mutator_full_mutation_data["generation_number"], df_non_mutator_full_mutation_data[column_name])[0])
# non_mutator_spearman_p = "{:.3e}".format(spearmanr(df_non_mutator_full_mutation_data["generation_number"], df_non_mutator_full_mutation_data[column_name])[1])
# ax[1].text((max(ax[1].get_xlim()) -100* offset), (max(ax[1].get_ylim()) - offset), "Corr:" + str(non_mutator_spearman_corr) + "| p- value: " + str(non_mutator_spearman_p), fontsize=3, color='black', ha='right', va='top')
# print(spearmanr(df_non_mutator_full_mutation_data["generation_number"], df_non_mutator_full_mutation_data[column_name]))
# all_spearman_corr = "{:.3e}".format(spearmanr(data["generation_number"], data[column_name])[0])
# all_spearman_p = "{:.3e}".format(spearmanr(data["generation_number"], data[column_name])[1])
# ax[2].text((max(ax[2].get_xlim()) -100* offset), (max(ax[2].get_ylim()) - offset), "Corr:" + str(all_spearman_corr) + "| p- value: " + str(all_spearman_p), fontsize=3, color='black', ha='right', va='top')
# ax[0].set_title(column_name + " vs generation for mutator", fontsize=fontsize);
# ax[1].set_title(column_name + " vs generation for non mutator", fontsize=fontsize);
# ax[2].set_title(column_name + " vs generation for all population", fontsize=fontsize);
# print(all_spearman_corr, all_spearman_p)
# print(spearmanr(data["generation_number"], data[column_name]))
# Apply the custom tick formatter
formatter = FuncFormatter(format_ticks);
ax[2].xaxis.set_major_formatter(formatter);
for i in range(3):
ax[i]=custom_figure_axis(ax[i], fontsize=fontsize, show_ticks = True);
ax[i].set_ylabel(column_name) ;
# ax[i].legend(ncol=2, fontsize=3, frameon=False)
plt.tight_layout();
return ax
def plot_ac_vs_column(ax, data:pd.DataFrame(), lst_quantile_dataframe_column_name_median:list(), column_name:str, show_ticks:bool = True, fontsize:int=10):
import seaborn as sns
import utility
import matplotlib.pyplot as plt
data=data.copy()
quantile_range = ['0-5%', '5-10%', '10-15%', '15-20%', '20-25%', '25-30%', '30-35%', '35-40%', '40-45%', \
'45-50%', '50-55%', '55-60%', '60-65%', '65-70%', '70-75%', '75-80%', '80-85%', '85-90%', \
'90-95%', '95-100%']
sns.boxplot(data = data, x = "quantile of " + str(column_name), y = "log10(AC)", ax=ax[0], boxprops=dict(edgecolor="black", linewidth=0),flierprops=dict(marker='o', markeredgecolor='black'), width=0.4,linewidth=0.5, fliersize=0.15, dodge=True, medianprops={"color": "black","linewidth":0.5}, color ="lime")
sns.lineplot(data = data, x = "quantile of " + str(column_name), y ="log10(AC)", estimator="median", lw= 0.5, color = "red", ax=ax[1])
# sns.lineplot(data = data, x = "quantile", y = "AC", estimator="median", lw= 1, color = "lime", ax=ax[1])
ax[1].scatter(x=quantile_range, y=lst_quantile_dataframe_column_name_median, s=0.5, color="red")
ax[0]=utility.custom_figure_axis(ax[0], fontsize=fontsize, show_ticks = show_ticks)
ax[1]=utility.custom_figure_axis(ax[1], fontsize=fontsize, show_ticks = show_ticks)
ax[1].legend().set_visible(False)
# ax[0].set_title("Ecoli AC vs quantile wise gain score", fontsize=5)
ax[0].set_xlabel(None)
# plt.subplots_adjust(hspace=0.2)
# plt.subplots_adjust(wspace=0.2) # You can adjust the value as needed
plt.tight_layout()
# plt.savefig("ecoli log10 AC vs quantile wise AG lineplot.pdf", dpi = 600, bbox_inches="tight")
return ax
"""return one sided greater manwhiteney p value top 50% vs last 50% quantile"""
def return_quantile_wise_pvalue(lst_quantile_dataframe:list()):
"""
Calculate the Mann-Whitney U test p-value between the first 0-50% quantile and the rest (in log scale).
Parameters:
- lst_quantile_dataframe (list of DataFrames): A list of DataFrames representing quantile data.
Returns:
- formatted_p (str): The formatted p-value resulting from the Mann-Whitney U test.
"""
import numpy as np
import utility
lst_first_50_percent_quantile = list()
lst_last_50_percent_quantile = list()
for i in range(len(lst_quantile_dataframe)):
if i<10:
lst_first_50_percent_quantile.extend(lst_quantile_dataframe[i]["allele count"])
if i>=10:
lst_last_50_percent_quantile.extend(lst_quantile_dataframe[i]["allele count"])
formatted_p = "{:.2e}".format(utility.man_whiteney(np.log10(lst_last_50_percent_quantile), np.log10(lst_first_50_percent_quantile)))
print("The p value between first 0-50% quantile and rest is : ", formatted_p)
return formatted_p
""" density plot of quantile of a given column"""
def plot_non_overlapping_ag(lst_quantile_accumulated_gain_vs_allele:list(), column_name:str):
import seaborn as sns
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1 , dpi = 600, figsize = (5, 5))
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[0][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[1][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[2][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[3][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[4][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[5][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[6][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[7][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[8][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[9][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[10][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[11][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[12][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[13][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[14][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[15][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[16][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[17][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[18][column_name], ax=ax)
sns.kdeplot(lst_quantile_accumulated_gain_vs_allele[19][column_name], ax=ax)
return ax
"""Convert xtick label to the 1K scale"""
def format_ticks(x:int, pos:int):
"""
Format tick labels for a plot axis.
Parameters:
x (int): The tick value.
pos (int): The position of the tick.
Returns:
str: The formatted tick label.
Behavior:
If x is greater than or equal to 1000, the function returns the value in 'k' format.
Otherwise, the function returns the original value.
"""
if x >= 1000:
return f'{x//1000}k'
else:
return x
def return_combined_fitness_esm_data(fitness_dataframe, esm_dataframe):
"""
Combines fitness data and ESM score data by calculating the median fitness and
median ESM score for each generation. It then merges the dataframes based on the generation number.
Parameters:
fitness_dataframe (pd.DataFrame): DataFrame containing fitness data with columns 'Generation' and 'Fitness'.
esm_dataframe (pd.DataFrame): DataFrame containing ESM score data with columns 'generation_number' and 'esm_score'.
Returns:
pd.DataFrame: Combined DataFrame with columns 'generation_number', 'median fitness', and 'median esm_score'.
"""
fitness_median_generation_wise = fitness_dataframe.groupby(["Generation"])["Fitness"].agg(['median', 'std'])
fitness_median_generation_wise = fitness_median_generation_wise.reset_index()
fitness_median_generation_wise.columns = ["generation_number", "median fitness", "std fitness"]
esm_median_generation_wise = esm_dataframe.groupby(["generation_number"])["esm_score"].agg(['median', 'std'])
esm_median_generation_wise = esm_median_generation_wise.reset_index()
esm_median_generation_wise.columns = ["generation_number", "median esm_score", "std esm_scor"]
combined_fitness_esm = pd.merge(fitness_median_generation_wise, esm_median_generation_wise)
return combined_fitness_esm
def return_combined_fitness_ag_data(fitness_dataframe, ag_dataframe):
"""
Combines fitness data and ag score data by calculating the median fitness and
median ag score for each generation. It then merges the dataframes based on the generation number.
Parameters:
fitness_dataframe (pd.DataFrame): DataFrame containing fitness data with columns 'Generation' and 'Fitness'.
ag_dataframe (pd.DataFrame): DataFrame containing AG score data with columns 'generation_number' and 'ag_score'.
Returns:
pd.DataFrame: Combined DataFrame with columns 'generation_number', 'median fitness', and 'median_ag_score'.
"""
fitness_median_generation_wise = fitness_dataframe.groupby(["Generation"])["Fitness"].agg(['median', 'std'])
fitness_median_generation_wise = fitness_median_generation_wise.reset_index()
fitness_median_generation_wise.columns = ["generation_number", "median fitness", "std fitness"]
ag_median_generation_wise = ag_dataframe.groupby(["generation_number"])["AG"].agg(['median', 'std'])
ag_median_generation_wise = ag_median_generation_wise.reset_index()
ag_median_generation_wise.columns = ["generation_number", "median ag_score", "std ag_score"]
combined_fitness_ag = pd.merge(fitness_median_generation_wise, ag_median_generation_wise)
return combined_fitness_ag
def return_generation_grouped_dataframe_with_one_sided_p(data, column_name: str, gen_cut_off:int, cut_off_string1:str, cut_off_string2:str):
"""
Group and aggregate data by generation and mutator status, and create a new column based on generation cut-offs.
Parameters:
data (pd.DataFrame): The input DataFrame containing the data.
gen_cut_off (int): The generation number used as a cut-off.
cut_off_string1 (str): Label for data points below or equal to the generation cut-off.
cut_off_string2 (str): Label for data points above the generation cut-off.
column_name (str): The column to perform operation.
Returns:
pd.DataFrame: A DataFrame with grouped and aggregated data, including the new grouping column.
Notes:
- The input DataFrame 'data' should have columns 'generation_number' and 'mutator'.
"""
data = data.copy()
score_median = data.groupby(["generation_number", "mutator"])[column_name].median()
score_median_reset_index = score_median.reset_index()
score_median_reset_index['group_gen'] = score_median_reset_index['generation_number'].apply(lambda x: cut_off_string1 if x <= gen_cut_off else cut_off_string2)
mut_gen = score_median_reset_index[score_median_reset_index.loc[:, "mutator"]=="mutator"]
p_mut = man_whiteney(mut_gen[mut_gen.loc[:, "group_gen"]==cut_off_string2][column_name],
mut_gen[mut_gen.loc[:, "group_gen"]==cut_off_string1][column_name])
print("The one sided man_whiteney p value within the mutator groups for data points " + cut_off_string2 +" and " + cut_off_string1 +" generation w.r.t " + column_name + " score is: ", str(p_mut))
non_mut_gen = score_median_reset_index[score_median_reset_index.loc[:, "mutator"]=="non mutator"]
p_non_mut = man_whiteney(non_mut_gen[non_mut_gen.loc[:, "group_gen"]==cut_off_string2][column_name],
non_mut_gen[non_mut_gen.loc[:, "group_gen"]==cut_off_string1][column_name])
print("The one sided man_whiteney p value within the non mutator groups for data points " + cut_off_string2 + " and " + cut_off_string1 +" w.r.t " + column_name + " score is: ", str(p_non_mut))
return score_median_reset_index
def p_value(data_new):
df = pd.DataFrame(columns = ["Gene", "esm p", "ag p"])
import scipy
data_new = data_new.copy()
unique_gene = list(set(data_new["Gene"]))
for i in range(len(unique_gene)):
data = data_new[data_new.loc[:, "Gene"]==unique_gene[i]]
esm_score_median = data.groupby("generation_number")["esm_score"].median()
ag_score_median = data.groupby("generation_number")["AG"].median()
if ((len(esm_score_median[esm_score_median.index<=30000])<=15)| (len(esm_score_median[esm_score_median.index>30000])<=15)):
continue
if ((len(ag_score_median[ag_score_median.index<=30000])<=15)| (len(ag_score_median[ag_score_median.index>30000])<=15)):
continue
df.loc[i, "Gene"] = unique_gene[i]
df.loc[i, "median esm"] = data["esm_score"].median()
df.loc[i, "median AG"] = data["AG"].median()
df.loc[i, "mean esm"] = data["esm_score"].mean()
df.loc[i, "mean AG"] = data["AG"].mean()
df.loc[i, "esm p"] = scipy.stats.mannwhitneyu(esm_score_median[esm_score_median.index<=30000], esm_score_median[esm_score_median.index>30000], alternative='less')[1]
df.loc[i, "ag p"] = scipy.stats.mannwhitneyu(ag_score_median[ag_score_median.index<=30000], ag_score_median[ag_score_median.index>30000], alternative='less')[1]
return df
def return_median_data_gen_wise(data:pd.DataFrame(), x_column: str, y_column: str):
"""
Calculate median values of specified columns grouped by 'generation_number'.
Parameters:
- data (pd.DataFrame): Input DataFrame containing the data.
- x_column (str): Name of the column for x-axis.
- y_column (str): Name of the column for y-axis.
Returns:
- pd.DataFrame: DataFrame containing median values of 'x_column' and 'y_column' grouped by 'generation_number'.
Note:
- This function calculates the median values of specified columns ('x_column' and 'y_column') grouped by 'generation_number'.
- The resulting DataFrame has columns 'generation_number', 'median x_column', and 'median y_column'.
"""
data = data.copy()
x_column_median = pd.DataFrame(data.groupby(["generation_number"])[x_column].median()).reset_index()
y_column_median = pd.DataFrame(data.groupby(["generation_number"])[y_column].median()).reset_index()
x_column_median.columns = ["generation_number", "median "+ x_column]
y_column_median.columns = ["generation_number", "median "+ y_column]
return pd.merge(x_column_median, y_column_median, on = "generation_number")
def spearmanr(x1, x2):
from scipy.stats import spearmanr
corr, p_value = spearmanr(x1, x2, nan_policy = "omit")
spearman_corr = "{:.3e}".format(corr)
spearman_p = "{:.3e}".format(p_value)
return spearman_corr, spearman_p
def plot_scatter(data:pd.DataFrame(), mutator_list, non_mutator_list, x_column, y_column, ax, logy=True):
"""
Plot scatter plots for mutator, non-mutator, and overall populations.
Parameters:
- data (pd.DataFrame): Input DataFrame containing the data.
- mutator_list (list): List of labels for mutator population.
- non_mutator_list (list): List of labels for non-mutator population.
- x_column (str): Name of the column for the x-axis.
- y_column (str): Name of the column for the y-axis.
- logy (bool, optional): If True, apply log10 transformation to y-axis. Default is True.
Returns:
- None
Note:
- The function generates scatter plots for mutator, non-mutator, and overall populations
based on the specified x_column and y_column.
"""
import matplotlib.pyplot as plt
import seaborn as sns
data = data.copy()
all_population_combined_median = return_median_data_gen_wise(data, x_column=x_column, y_column=y_column)
non_mutator_population_combined_median = return_median_data_gen_wise(data[data["label"].isin(non_mutator_list)], x_column=x_column, y_column=y_column)
mutator_population_combined_median = return_median_data_gen_wise(data[data["label"].isin(mutator_list)], x_column=x_column, y_column=y_column)
norm = plt.Normalize(all_population_combined_median['generation_number'].min(), all_population_combined_median['generation_number'].max())
sm = plt.cm.ScalarMappable(cmap="mako", norm=norm)
y_updated = "median "+ y_column
x_updated = "median "+ x_column
if logy:
y_updated = "log10(median " + y_column + ")"
mutator_population_combined_median[y_updated] = np.log10(mutator_population_combined_median["median "+ y_column])
non_mutator_population_combined_median[y_updated] = np.log10(non_mutator_population_combined_median["median "+ y_column])
all_population_combined_median[y_updated] = np.log10(all_population_combined_median["median "+ y_column])
ax[0] = sns.scatterplot(mutator_population_combined_median, x = x_updated, y = y_updated, hue="generation_number",ax= ax[0], legend=True, s = 5, palette='mako')
ax[1] = sns.scatterplot(non_mutator_population_combined_median, x = x_updated, y =y_updated, hue="generation_number",ax= ax[1], legend=False, s = 5, palette='mako')
ax[2] = sns.scatterplot(all_population_combined_median, x = x_updated, y = y_updated, hue="generation_number",ax= ax[2], legend=False, s = 5, palette='mako')
offset = 0.01
mutator_spearman_corr, mutator_spearman_p = spearmanr(mutator_population_combined_median[x_updated], mutator_population_combined_median[y_updated])
non_mutator_spearman_corr, non_mutator_spearman_p = spearmanr(non_mutator_population_combined_median[x_updated], non_mutator_population_combined_median[y_updated])
combined_spearman_corr, combined_spearman_p = spearmanr(all_population_combined_median[x_updated], all_population_combined_median[y_updated])
# print(mutator_spearman_corr, mutator_spearman_p )
ax[0].text((max(ax[0].get_xlim()) -100* offset), (max(ax[0].get_ylim()) - offset), "Corr:" + str(mutator_spearman_corr) + "| p- value: " + str(mutator_spearman_p), fontsize=3, color='red', ha='right', va='top')
ax[1].text((max(ax[1].get_xlim()) -100* offset), (max(ax[1].get_ylim()) - offset), "Corr:" + str(non_mutator_spearman_corr) + "| p- value: " + str(non_mutator_spearman_p), fontsize=3, color='red', ha='right', va='top')
ax[2].text((max(ax[2].get_xlim()) -100* offset), (max(ax[2].get_ylim()) - offset), "Corr:" + str(combined_spearman_corr) + "| p- value: " + str(combined_spearman_p), fontsize=3, color='red', ha='right', va='top')
# formatted_correlation_mutator = "{:.2e}".format(mutator_population_combined_median[x_updated].corr(mutator_population_combined_median[y_updated]))
# ax[0].text((max(ax[0].get_xlim()) - 100*offset), (max(ax[0].get_ylim()) - offset), "Corr:" + formatted_correlation_mutator, fontsize=5, color='red', ha='right', va='top')
# formatted_correlation_non_mutator = "{:.2e}".format(non_mutator_population_combined_median[x_updated].corr(non_mutator_population_combined_median[y_updated]))
# ax[1].text((max(ax[1].get_xlim()) - 100*offset), (max(ax[1].get_ylim()) - offset), "Corr:" + formatted_correlation_non_mutator, fontsize=5, color='red', ha='right', va='top')
# formatted_corr_all = "{:.2e}".format(all_population_combined_median[x_updated].corr(all_population_combined_median[y_updated]))
# ax[2].text((max(ax[2].get_xlim()) -100* offset), (max(ax[2].get_ylim()) - offset), "Corr:" + formatted_corr_all, fontsize=5, color='red', ha='right', va='top')
ax[0].set_title("mutator", fontsize=5)
ax[1].set_title("non mutator", fontsize=5)
ax[2].set_title("Overall population", fontsize=5)
for i in range(3):
ax[i] = custom_figure_axis(ax[i], fontsize=5, show_ticks = True, rotation=0)
# ax[i].set_ylabel("log10(Median AC)")
ax[0].get_legend().remove()
# cbar = ax[0].figure.colorbar(sm, ax=ax[2])
# ax[0].figure.colorbar(sm)
# ax[1].figure.colorbar(sm)
# ax[2].figure.colorbar(sm)
plt.suptitle(y_updated + " vs " + x_updated + " scatter plots for all type", fontsize=6)
plt.tight_layout()
return ax#mutator_population_combined_median, non_mutator_population_combined_median, all_population_combined_median
def dba_stat(data, group_by_col,target_col_name, num_permutations, random_state = 42):
"""
Performs a permutation test using Kendall's Tau to evaluate the correlation
between a median wise target column and a grouping variable.
Parameters:
- data (pd.DataFrame): Input DataFrame containing the grouping column and target column.
- group_by_col (str): Column name to group the data by.
- target_col_name (str): Column name of the target variable.
- num_permutations (int): Number of permutations to perform (default=1000).
- random_state (int): Random seed for reproducibility (default=42).
Returns:
- float: Permutation-based p-value.
- float: Observed Kendall's Tau correlation.
"""
data = data.copy()
import numpy as np
from scipy.stats import kendalltau
np.random.seed(random_state)
def return_kendall_corr(x, y):
kendall_corr, kendall_p = kendalltau(x, y)
return kendall_corr
f = return_kendall_corr
generation_medians_original = data.groupby(group_by_col).agg({
target_col_name: 'median',
}).reset_index()
# print(generation_medians_original)
d_obs = f(np.array(range(len(generation_medians_original[target_col_name]))), generation_medians_original[target_col_name])
original_scores = data[target_col_name].values
# print(original_scores.shape)
pseudo_corr = []
for i in range(1, num_permutations + 1):
random_column_name = f'random_{i}_' + target_col_name
data.loc[:, random_column_name] = np.random.permutation(original_scores)
# print(data.loc[:, random_column_name])
generation_medians_random = data.groupby(group_by_col).agg({
random_column_name: 'median'}).reset_index()
# print(generation_medians_random)
pseudo_corr.append(f(np.array(range(len(generation_medians_random[random_column_name]))), generation_medians_random[random_column_name]))
pseudo_corr = np.array(pseudo_corr)
freq_p_value = (np.sum(pseudo_corr >= d_obs)+1) / (num_permutations + 1)
return freq_p_value, d_obs
def return_box_with_p_effect_size(ax, data, x_columns, y_columns, group1_name, group2_name, y_pos, hue_columns=None, fontsize=5):
import pingouin as pg
# Extract x-tick labels and their positions from the Axes object
xtick_labels = [tick.get_text() for tick in ax.get_xticklabels()]
# print(xtick_labels)
xtick_positions = [tick.get_position()[0] for tick in ax.get_xticklabels()]
try:
if not hue_columns is None:
for idx, (label, pos) in enumerate(zip(xtick_labels, xtick_positions)):
# Filter data for the current x-tick category
data_tmp = data[data[x_columns] == label]
# print("hello")
# print(data_tmp[data_tmp[hue_columns] == group1_name])
# Separate groups based on hue column
group1 = data_tmp[data_tmp[hue_columns] == group1_name][y_columns]
# print(group1)
group2 = data_tmp[data_tmp[hue_columns] == group2_name][y_columns]
# print("hi")
# Compute p-value using Mann-Whitney U test
p_value = man_whiteney(group1, group2)
# Compute effect size using Cohen's d
d_value = pg.compute_effsize(group1, group2, eftype="cohen")
# Annotate the plot with p-value and effect size
ax.text(pos, y_pos, f"p: {p_value:.2e} \nd: {d_value:.2e}", ha="center", fontsize=fontsize, color="red")
print(f"x: {label}, p-value: {p_value:.2e}, Cohen's d: {d_value:.2e}")
return ax
if ((hue_columns is None) and (len(xtick_labels) == 2)):
# for idx, (label, pos) in enumerate(zip(xtick_labels, xtick_positions)):
group1 = data[data[x_columns] == group1_name][y_columns]
group2 = data[data[x_columns] == group2_name][y_columns]
# Compute p-value using Mann-Whitney U test
p_value = man_whiteney(group1, group2)
# Compute effect size using Cohen's d
d_value = pg.compute_effsize(group1, group2, eftype="cohen")
# Annotate the plot with p-value and effect size
ax.text(0.5, y_pos, f"p: {p_value:.2e} \nd: {d_value:.2e}", ha="center", fontsize=fontsize, color="red")
# print(f"x: {label}, p-value: {p_value:.2e}, Cohen's d: {d_value:.2e}")
return ax
except:
print("There is some error")