-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathitembasedmain.py
28 lines (24 loc) · 1.33 KB
/
itembasedmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import math
import itembasedrecommender
import itembasedsimilarity
import itembasedevaluation
def predict(i,training_data,testing_data):
item_rec = itembasedrecommender.ItemBasedRecommender('result.txt',training_data,testing_data,itembasedsimilarity.predict_cosine_improved_tag)
item_rec.loadTraining_set()
item_rec.loadPredicting_set()
item_rec.calculate_similar_items(i,'result.pkl')
item_rec.loadItemMatch('result.pkl')
print(itembasedevaluation.Evaluation(testing_data,itembasedrecommender.ItemBasedRecommender('result2.txt',training_data,testing_data,similarity_measure=itembasedsimilarity.predict_cosine_improved)).evalByAccuracy())
output = open(item_rec.output_file, 'w')
for p in item_rec.predictLikes:
print(p[0], p[1], item_rec.predict_rating(p[0], p[1]))
output.write(p[0] + '\t' + p[1] + '\t' + str(item_rec.predict_rating(p[0], p[1])) + '\r\r\n')
output.close()
if __name__ == '__main__':
print("input the name of data set as traning set (u.data ua.base u1.base u2.base u3.base u4.base u5.base")
training_data = '//'+input()
print("input the name of data set as testing set (u.data ua.test u1.test u2.test u3.test u4.test u5.test")
testing_data = '//'+input()
print("select the size of feature matrix")
n = int(input())
predict(n,training_data,testing_data)