-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathitembasedevaluation.py
51 lines (46 loc) · 1.74 KB
/
itembasedevaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from __future__ import division
import os
from math import sqrt
import itembasedrecommender
import itembasedsimilarity
class Evaluation:
def __init__(self, testFile, rec,pathStr=os.getcwd() + '//ml-100k', userFile='/u.user'):
self.testFile = testFile
self.rec = rec
self.pathStr = pathStr
self.userFile = userFile
def load_User_file(self):
movie_likes = {}
try:
with open(self.pathStr + self.userFile) as user:
for line in user:
(userId, userAge) = line.split('|')[0:2]
movie_likes.setdefault(userId, {})
except IOError as err:
print ('File error: ' + str(err))
try:
with open(self.pathStr + self.testFile) as t:
for line in t:
(userid, itemid, rating, ts) = line.split('\t')
movie_likes[userid][itemid] = float(rating)
except IOError as err:
print ('File error: ' + str(err))
return movie_likes
def evalByAccuracy(self):
sum_Of_RMSE = 0
count_Records = 0
sum_Of_MAE = 0
testing_Set = self.load_User_file()
for user in testing_Set:
# print ("------------", user, "--------")
L = self.rec.get_recommended_items(user)
for Item in L:
if Item[1] in testing_Set[user]:
count_Records += 1
df = abs(Item[0] - testing_Set[user][Item[1]])
# print (count_Records, ":", df)
sum_Of_RMSE += df ** 2
sum_Of_MAE += df
RMSE = sqrt(sum_Of_RMSE / count_Records)
MAE = sum_Of_MAE / count_Records
return MAE, RMSE, count_Records