-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpiferre.py
executable file
·3115 lines (2557 loc) · 94.9 KB
/
piferre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Interface to use FERRE from python for DESI/BOSS data
use: piferre -sp path-to-spectra [-rv rvpath -l libpath -spt sptype -rvt rvtype -c config -n cores -t truthfile -o list_of_targets -x]
e.g. piferre -sp /data/spectro/redux/dc17a2/spectra-64
Author C. Allende Prieto
'''
import pdb
import sys
import os
import platform
import glob
import re
import importlib
from numpy import arange, loadtxt, savetxt, genfromtxt, zeros, ones, nan, sqrt, \
interp, insert, append, \
concatenate, correlate, array, reshape, min, max, diff, where, divide, mean, \
stack, vstack, \
int64, int32, \
log10, median, std, mean, pi, intersect1d, isfinite, ndim, cos, sin, exp, isnan
from scipy.signal import savgol_filter
from scipy.optimize import curve_fit
from astropy.io import fits
from astropy.coordinates import SkyCoord
import astropy.table as tbl
import astropy.units as units
import matplotlib.pyplot as plt
#from mpl_toolkits.axes_grid.inset_locator import (inset_axes, InsetPosition,
# mark_inset)
from synple import head_synth,lambda_synth,load_conf
import subprocess
import datetime, time
import argparse
#import yaml
from multiprocessing import Pool,cpu_count
version = '0.4'
hplanck = 6.62607015e-34 # J s
clight = 299792458.0 #/s
piferredir = os.path.dirname(os.path.realpath(__file__))
confdir = os.path.join(piferredir,'config')
filterdir = os.path.join(piferredir,'filter')
#create a slurm script for a given pixel
def write_slurm(root,ncores=1,minutes=102,path=None,ngrids=None,
config='desi-n.yaml', cleanup=True):
ferre=os.environ['HOME']+"/ferre/src/a.out"
python_path1=os.environ['HOME']+"/piferre"
python_path2=os.environ['HOME']+"/synple"
try:
host=os.environ['HOST']
except:
host='Unknown'
conf=load_conf(config,confdir=confdir)
now=time.strftime("%c")
if path is None: path='.'
if ngrids is None: ngrids=1
f=open(os.path.join(path,root+'.slurm'),'w')
f.write("#!/bin/bash \n")
f.write("#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# \n")
f.write("#This script was written by piferre.py version "+version+" on "+now+" \n")
f.write("#SBATCH --time="+str(int(minutes)+1)+"\n") #minutes
f.write("#SBATCH --ntasks=1" + "\n")
f.write("#SBATCH --nodes=1" + "\n")
if host[:4] == 'cori': #cori
f.write("#SBATCH --qos=regular" + "\n")
f.write("#SBATCH --constraint=haswell" + "\n")
#f.write("#SBATCH --time="+str(minutes)+"\n") #minutes
#f.write("#SBATCH --ntasks=1" + "\n")
f.write("#SBATCH --cpus-per-task="+str(ncores*2)+"\n")
f.write("#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# \n")
elif (host == 'login1'): #lapalma
#f.write("#SBATCH -J "+str(root)+" \n")
#f.write("#SBATCH -o "+str(root)+"_%j.out"+" \n")
#f.write("#SBATCH -e "+str(root)+"_%j.err"+" \n")
f.write("#SBATCH --cpus-per-task="+str(ncores)+"\n")
#hours2 = int(minutes/60)
#minutes2 = minutes%60
#f.write("#SBATCH -t "+"{:02d}".format(hours2)+":"+"{:02d}".format(minutes2)+":00"+"\n") #hh:mm:ss
#f.write("#SBATCH -D "+os.path.abspath(path)+" \n")
f.write("#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# \n")
f.write("module load gnu"+"\n")
f.write("module load python/3.8"+"\n")
else: # perlmutter
f.write("#SBATCH --qos=regular" + "\n")
f.write("#SBATCH --constraint=cpu" + "\n")
#f.write("#SBATCH --time="+str(minutes)+"\n") #minutes
#f.write("#SBATCH --ntasks=1" + "\n")
f.write("#SBATCH --account=desi \n")
f.write("#SBATCH --cpus-per-task="+str(ncores*2)+"\n")
f.write("#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# \n")
f.write("module load PrgEnv-gnu"+"\n")
f.write("module load python"+"\n")
f.write("cd "+os.path.abspath(path)+"\n")
f.write("vmstat 1 > "+str(root)+"_vmstat.dat & \n")
f.write("vmstat_pid=$! \n")
for i in range(ngrids):
#f.write("cp input.nml-"+root+"_"+str(i)+" input.nml \n")
f.write("( time "+ferre+" -l input.lst-"+root+"_"+"{:02d}".format(i+1)+" >& "+root+".log_"+"{:02d}".format(i+1))
f.write(" ; echo FERRE job " + "{:02d}".format(i+1) + " ) & \n")
f.write("pids+=($!) \n")
f.write("for pid in ${pids[@]} \n")
f.write("do \n")
f.write(" wait $pid \n")
f.write("done \n")
f.write("kill $vmstat_pid \n")
command="python3 -c \"import sys; sys.path.insert(0, '"+python_path1+ \
"'); sys.path.insert(0, '"+python_path2+"'); from piferre import opfmerge, oafmerge, write_tab_fits, write_mod_fits, cleanup;"+ \
" opfmerge(\'"+str(root)+"\',config='"+config+"\');"
if 'elem' in conf:
command=command + " oafmerge(\'"+str(root)+"\',config='"+config+"\');"
command=command + " write_tab_fits(\'"+str(root)+"\',config='"+config+"\');"+ \
" write_mod_fits(\'"+str(root)+"\',config='"+config+"\')"
if cleanup == True:
command=command+" ; cleanup(\'"+str(root)+"\')"
command=command+" \"\n"
f.write(command)
f.close()
os.chmod(os.path.join(path,root+'.slurm'),0o755)
return None
#remove FERRE I/O files after the final FITS tables have been produced
def cleanup(root):
vrdfiles = glob.glob(root+'*vrd')
wavefiles = glob.glob(root+'*wav')
opffiles = glob.glob(root+'*opf*')
optfiles = glob.glob(root+'*opt*')
nmlfiles = glob.glob('input.nml-'+root+'*')
lstfiles = glob.glob('input.lst-'+root+'*')
errfiles = glob.glob(root+'*err')
frdfiles = glob.glob(root+'*frd')
nrdfiles = glob.glob(root+'*nrd*')
mdlfiles = glob.glob(root+'*mdl*')
ndlfiles = glob.glob(root+'*ndl*')
fmpfiles = glob.glob(root+'*fmp.fits')
scrfiles = glob.glob(root+'*scr.fits')
logfiles = glob.glob(root+'.log*')
slurmfiles = glob.glob(root+'*slurm')
oaffiles = glob.glob(root+'*.oaf.*')
nadfiles = glob.glob(root+'*.nad.*')
nalfiles = glob.glob(root+'*.nal.*')
allfiles = vrdfiles + wavefiles + opffiles + optfiles + nmlfiles + lstfiles + \
errfiles + frdfiles + nrdfiles + mdlfiles + ndlfiles + \
fmpfiles + scrfiles + logfiles + slurmfiles + oaffiles + nadfiles + nalfiles
print('removing files:',end=' ')
for entry in allfiles:
print(entry,' ')
os.remove(entry)
print(' ')
return
#create a FERRE control hash (content for a ferre input.nml file) and write it to disk
def mknml(conf,root,libpath='.',path='.'):
try:
host=os.environ['HOST']
except:
host='Unknown'
try:
scratch=os.environ['SCRATCH']
except:
scratch='./'
bands=conf['bands']
grids=conf['grids']
if 'grid_bands' in conf: grid_bands=conf['grid_bands']
if 'abund_grids' in conf: abund_grids=conf['abund_grids']
for k in range(len(grids)): #loop over all grids
synth=grids[k]
synthfiles=[]
if 'grid_bands' in conf:
grid_bands=conf['grid_bands']
for band in grid_bands:
if len(grid_bands) == 0:
gridfile=synth+'.dat'
else:
if len(grid_bands) == 1:
gridfile=synth+'-'+band+'.dat'
elif len(grid_bands) == len(bands):
gridfile=synth+'-'+band+'.dat'
else:
print('mknml: error -- the array grid_bands must have 0, 1 or the same length as bands')
return None
synthfiles.append(gridfile)
else:
gridfile=synth+'.dat'
synthfiles.append(gridfile)
libpath=os.path.abspath(libpath)
header=head_synth(os.path.join(libpath,synthfiles[0]))
if ndim(header) == 0:
nd=int(header['N_OF_DIM'])
n_p=tuple(array(header['N_P'].split(),dtype=int))
else:
nd=int(header[0]['N_OF_DIM'])
n_p=tuple(array(header[0]['N_P'].split(),dtype=int))
lst=open(os.path.join(path,'input.lst-'+root+'_'+"{:02d}".format(k+1)),'w')
for run in conf[synth]: #loop over all runs (param and any other one)
#global keywords in yaml adopted first
nml=dict(conf['global'])
#adding/override with param keywords in yaml
if 'param' in conf[synth]:
for key in conf[synth]['param'].keys(): nml[key]=conf[synth]['param'][key]
#adding/override with run keywords in yaml
for key in conf[synth][run].keys():
nml[key] = str(conf[synth][run][key])
#check that inter is feasible with this particular grid
if 'inter' in nml:
if (min(n_p)-1 < int(nml['inter'])): nml['inter']=min(n_p)-1
#ncores from command line is for the slurm job,
#the ferre omp nthreads should come from the config yaml file
nml['ndim']=nd
for i in range(len(synthfiles)):
nml['SYNTHFILE('+str(i+1)+')'] = "'"+os.path.join(libpath,synthfiles[i])+"'"
#extensions provided in yaml for input/output files are now supplemented with root
files = ['pfile', 'ffile', 'erfile','opfile','offile','sffile']
for entry in files:
if entry in nml: nml[entry] = "'"+root+'.'+nml[entry]+"'"
if 'filterfile' in nml: nml['filterfile'] = "'"+os.path.join(filterdir,nml['filterfile'])+"'"
#make sure tmp 'sort' files are stored in $SCRATCH for cori
#if host[:4] == 'cori':
# nml['scratch'] = "'"+scratch+"'"
#no longer needed after replacing fsort by msort in ferre (may 2022)
#get rid of keywords in yaml that are not for the nml file, but for opfmerge
#or write_tab
labels = nml['labels']
if 'labels' in nml: del nml['labels']
if 'llimits' in nml: del nml['llimits']
if 'steps' in nml: del nml['steps']
#expanding abbreviations $i -> synth number, $synth -> grid name
# $Teff -> index of Teff variable, etc.
for key in nml:
nml[key] = nml_key_expansion(str(nml[key]),k,synth,labels)
nmlfile='input.nml-'+root+'_'+"{:02d}".format(k+1)+run
lst.write(nmlfile+'\n')
write_nml(nml,nmlfile=nmlfile,path=path)
if 'extensions' in conf:
for run in conf['extensions']: #loop over all extensions
#extensions are like runs to be applied to all grids
#global keywords in yaml adopted first
nml=dict(conf['global'])
#adding/override with param keywords in yaml
if 'param' in conf[synth]:
for key in conf[synth]['param'].keys(): nml[key]=conf[synth]['param'][key]
#adding/override with run keywords in yaml
for key in conf['extensions'][run].keys():
nml[key] = str(conf['extensions'][run][key])
#check that inter is feasible with this particular grid
if 'inter' in nml:
if (min(n_p)-1 < int(nml['inter'])): nml['inter']=min(n_p)-1
#ncores from command line is for the slurm job,
#the ferre omp nthreads should come from the config yaml file
nml['ndim']=nd
for i in range(len(synthfiles)):
nml['SYNTHFILE('+str(i+1)+')'] = "'"+os.path.join(libpath,synthfiles[i])+"'"
#extensions provided in yaml for input/output files are now supplemented with root
files = ['pfile', 'ffile', 'erfile','opfile','offile','sffile']
for entry in files:
if entry in nml: nml[entry] = "'"+root+'.'+nml[entry]+"'"
if 'filterfile' in nml: nml['filterfile'] = "'"+os.path.join(filterdir,nml['filterfile'])+"'"
#make sure tmp 'sort' files are stored in $SCRATCH for cori
#no longer needed after changing fsort by msort
#if host[:4] == 'cori':
# nml['scratch'] = "'"+scratch+"'"
#get rid of keywords in yaml that are not for the nml file, but for opfmerge or write_tab
labels = nml['labels']
if 'labels' in nml: del nml['labels']
if 'llimits' in nml: del nml['llimits']
if 'steps' in nml: del nml['steps']
#expanding abbreviations $i -> synth number, $synth -> grid name
# $Teff -> index of Teff variable, etc.
for key in nml:
nml[key] = nml_key_expansion(str(nml[key]),k,synth,labels)
if run == "abund":
if synth not in abund_grids: continue #skip abundances for grids not in abund_grids
#replacing $elem -> element symbol
# $proxy -> index of the proxy variable for the element in the grid
proxies=conf['proxy']
indproxies = zeros(len(proxies),dtype=int)
j = 0
for entry in proxies:
i = 1
for entry2 in labels:
if entry == entry2: indproxies[j] = i
i = i + 1
j = j + 1
for i in range(len(conf['elem'])):
nml1 = dict(nml)
for key in nml1:
content = str(nml[key])
if '$elem' in content: content = content.replace('$elem',str(conf['elem'][i]))
if '$proxy' in content: content = content.replace('$proxy',str(indproxies[i]))
nml1[key] = content
nmlfile='input.nml-'+root+'_'+"{:02d}".format(k+1)+conf['elem'][i]
lst.write(nmlfile+'\n')
write_nml(nml1,nmlfile=nmlfile,path=path)
else:
nmlfile='input.nml-'+root+'_'+"{:02d}".format(k+1)+run
lst.write(nmlfile+'\n')
write_nml(nml,nmlfile=nmlfile,path=path)
lst.close()
return None
def nml_key_expansion(content,k,synth,labels):
if '$i' in content: content = content.replace('$i',"{:02d}".format(k+1))
if '$synth' in content: content = content.replace('$synth',synth)
i = 1
for entry in labels:
ss = '$'+entry
if ss in content: content = content.replace(ss,str(i))
i = i + 1
return content
#write out a FERRE control hash to an input.nml file
def write_nml(nml,nmlfile='input.nml',path=None):
if path is None: path='./'
f=open(os.path.join(path,nmlfile),'w')
f.write('&LISTA\n')
for item in nml.keys():
f.write(str(item))
f.write("=")
f.write(str(nml[item]))
f.write("\n")
f.write(" /\n")
f.close()
return None
#run FERRE
def ferrerun(path=None):
if path is None: path="./"
pwd=os.path.abspath(os.curdir)
os.chdir(path)
ferre="/home/callende/ferre/src/a.out"
code = subprocess.call(ferre)
os.chdir(pwd)
return code
#read redshift derived by the DESI pipeline
def read_zbest(filename):
hdu=fits.open(filename)
if len(hdu) > 1:
enames=extnames(hdu)
#print(enames)
if 'ZBEST' in enames:
zbest=hdu['zbest'].data
zerr=zbest['zerr']
targetid=zbest['targetid'] #array of long integers
elif 'REDSHIFTS' in enames:
zbest=hdu['redshifts'].data
zerr=zbest['zerr']
targetid=zbest['targetid'] #array of long integers
else:
zbest=hdu[1].data
zerr=zbest['z_err']
plate=zbest['plate']
mjd=zbest['mjd']
fiberid=zbest['fiberid']
targetid=[]
for i in range(len(plate)):
targetid.append(str(plate[i])+'-'+str(mjd[i])+'-'+str(fiberid[i]))
targetid=array(targetid) #array of strings
#print(type(targetid),type(zbest['z']),type(targetid[0]))
#print(targetid.shape,zbest['z'].shape)
z=dict(zip(targetid, zip(zbest['z'],zerr) ))
else:
z=dict()
return(z)
#read redshift derived by the Koposov pipeline
def read_k(filename):
hdu=fits.open(filename)
if len(hdu) > 1:
k=hdu['rvtab'].data
targetid=k['targetid']
zerr=k['vrad_err']/clight*1e3
#targetid=k['fiber']
#teff=k['teff']
#logg=k['loog']
#vsini=k['vsini']
#feh=k['feh']
#z=k['vrad']/clight*1e3
z=dict(zip(targetid, zip(k['vrad']/clight*1e3, zerr) ))
#z_err=dict(zip(k['target_id'], k['vrad_err']/clight*1e3))
else:
z=dict()
return(z)
#read truth tables (for simulations)
def read_truth(filename):
hdu=fits.open(filename)
truth=hdu[1].data
targetid=truth['targetid']
feh=dict(zip(targetid, truth['feh']))
teff=dict(zip(targetid, truth['teff']))
logg=dict(zip(targetid, truth['logg']))
#rmag=dict(zip(targetid, truth['flux_r']))
rmag=dict(zip(targetid, truth['mag']))
z=dict(zip(targetid, truth['truez']))
return(feh,teff,logg,rmag,z)
#read spectra
def read_desispec(filename,band=None):
hdu=fits.open(filename)
if filename.find('spectra-') > -1 or filename.find('exp_') > -1 or filename.find('coadd') > -1: #DESI
header=hdu[0].header
wavelength=hdu[band+'_WAVELENGTH'].data #wavelength array
flux=hdu[band+'_FLUX'].data #flux array (multiple spectra)
ivar=hdu[band+'_IVAR'].data #inverse variance (multiple spectra)
#mask=hdu[band+'_MASK'].data #mask (multiple spectra)
res=hdu[band+'_RESOLUTION'].data #resolution matrix (multiple spectra)
#bintable=hdu['BINTABLE'].data #bintable with info (incl. mag, ra_obs, dec_obs)
fibermap=hdu['FIBERMAP'].data
if filename.find('spPlate') > -1: #SDSS/BOSS
header=hdu['PRIMARY'].header
wavelength=header['CRVAL1']+arange(header['NAXIS1'])*header['CD1_1']
#wavelength array
wavelength=10.**wavelength
flux=hdu['PRIMARY'].data #flux array (multiple spectra)
#ivar=hdu['IVAR'].data #inverse variance (multiple spectra)
ivar=hdu[1].data #inverse variance (multiple spectra)
#andmask=hdu['ANDMASK'].data #AND mask (multiple spectra)
#ormask=hdu['ORMASK'].data #OR mask (multiple spectra)
#res=hdu['WAVEDISP'].data #FWHM array (multiple spectra)
res=hdu[4].data #FWHM array (multiple spectra)
#bintable=hdu['BINTABLE'].data #bintable with info (incl. mag, ra, dec)
fibermap=hdu['FIBERMAP'].data
return((wavelength,flux,ivar,res,fibermap,header))
#read sptab/rvtab file, returning sp/rvtab, fibermap and primary header (s,f,p)
def read_tab(file):
d=fits.open(file)
n=extnames(d)
h=d[0].header
if 'SPTAB' in n or 'sptab' in n:
s=d['sptab'].data
elif 'rvtab' in n or 'RVTAB' in n:
s=d['rvtab'].data
else:
print('Error: cannot find an rvtab or sptab extension in the file')
s=None
f=d['fibermap'].data
return(s,f,h)
#read sp/rvmod table, returning bx,by,rx,ry,zx,zy (wavelength and fluxes), and
#primary header (h)
#spmod files contain obs,err,flx,fit and abu arrays
#rvmod files contain only fit
def read_mod(file):
d=fits.open(file)
h=d[0].data
m=d['fibermap'].data
bx=d['b_wavelength'].data
by=d['b_model'].data
rx=d['r_wavelength'].data
ry=d['r_model'].data
zx=d['z_wavelength'].data
zy=d['z_model'].data
return(bx,by,rx,ry,zx,zy,m,h)
#show the data (obs) and best-fitting model (fit) for i-th spectrum (0,1...) in an rv/spmod file
def show1(modfile,i=0,abu=False):
xb,yb,xr,yr,xz,yz,h = read_spmod(modfile)
plt.clf()
plt.ion()
plt.plot(xb,yb['obs'][i,:],xr,yr['obs'][i,:],xz,yz['obs'][i,:])
plt.plot(xb,yb['fit'][i,:],xr,yr['fit'][i,:],xz,yz['fit'][i,:])
plt.xlabel('wavelength ($\AA$)')
plt.ylabel('flux')
if abu == True:
plt.plot(xb,yb['abu'][i,:],xr,yr['abu'][i,:],xz,yz['abu'][i,:])
#plt.plot(xb,yb['abu'][i,:]/yb['fit'][i,:],xr,yr['abu'][i,:]/yr['fit'][i,:],xz,yz['abu'][i,:]/yz['fit'][i,:])
plt.legend(['b','r','z','fit b','fit r','fit z','abu b','abu r','abu z'])
else:
plt.legend(['b','r','z','fit b','fit r','fit z'])
plt.show()
return(None)
def smooth(x,n):
"""Smooth using a Svitzky-Golay cubic filter
Parameters
----------
x: arr
input array to smooth
n: int
window size
"""
x2 = savgol_filter(x, n, 3)
return(x2)
#identify suitable calibration stars in an sframe by matching to an sptab,
#returning their indices in the sframe and sptab arrays
def ind_calibrators(sframe,sptab,
tefflim=[3600.,10000.],gaiaglim=[15.,20.],maxchi=1e5):
"""
sframe = sframe file
sptab = sptabfile
"""
#read fibermap from sframefile
sf=fits.open(sframe)
fmp=sf['fibermap'].data
#info on calibration stars from sptab
s,f,h = read_tab(sptab)
ind = {} #dict that connects targetid to index of spectrum in spmod/tab
for i in range(len(f['target_ra'])): ind[f['targetid'][i]] = i
i = 0
j = 0
ind_sf = []
ind_sp = []
for entry in fmp['targetid']:
if entry in ind.keys():
ie = ind[entry]
if (s['teff'][ie] > tefflim[0] and s['teff'][ie] <= tefflim[1] and
fmp['gaia_phot_g_mean_mag'][j] > gaiaglim[0] and
fmp['gaia_phot_g_mean_mag'][j] < gaiaglim[1] and
s['chisq_tot'][ind[entry]] < maxchi):
ind_sf.append(j)
ind_sp.append(ie)
i += 1
j += 1
return(ind_sf,ind_sp)
#calibrate in flux an sframe using parameters in sptab and model flux in spmod
def reponse(ind_sf,ind_sp,sframe,spmod):
"""
ind_sf = indices for calibrators in sframe
ind_sp = indices for calibrators in sptab/spmod
sframe = sframe file
spmod = piferre spmod produced with theoretical SEDs in the 'fit' field
"""
from extinction import ccm89, apply
from pyphot import get_library
lib = get_library()
filter = lib['Gaia_MAW_G']
#info on calibration stars
bx,by,rx,ry,zx,zy,h2 = read_spmod(spmod)
#observations
sf=fits.open(sframe)
fmp=sf['fibermap'].data
x=sf['wavelength'].data
y=sf['flux'].data
ivar=sf['ivar'].data
#ext = F99(Rv=3.1)
k = 0
for i in ind_sp:
j = ind_sf[k]
if x[0] < 4000.:
model = interp(x,bx,by['fit'][i,:])
elif x[0] < 6000.:
model = interp(x,rx,ry['fit'][i,:])
else:
model = interp(x,zx,zy['fit'][i,:])
newx = x.byteswap().newbyteorder() # force native byteorder for calling ccm89
model = model * 4. * pi # Hlambda to Flambda
model = apply( ccm89(newx, fmp['ebv'][j]*3.1, 3.1), model) #redden model
model = model * x / (hplanck*1e7) / (clight*1e2) # erg/cm2/s/AA -> photons/cm2/s/AA
#scale = median(model)/median(y[j,:])
#print('scale1=',scale)
x_brz = concatenate((bx[(bx < min(rx))],
rx,
zx[(zx > max(rx))]))
model_brz = concatenate((by['fit'][i,(bx < min(rx))],
ry['fit'][i,:],
zy['fit'][i,(zx > max(rx))]))
model_brz = model_brz * 4. * pi # Hlambda to Flambda
scale = filter.get_flux(x_brz,model_brz).value / 10.**(
(fmp['gaia_phot_g_mean_mag'][j] + filter.Vega_zero_mag)/(-2.5) )
#print('scale2=',scale)
r = y[j,:]/model*scale
w = ivar[j,:]*(model/scale)**2
if k == 0:
rr = r
ww = w
else:
rr = vstack((rr,r))
ww = vstack((ww,w))
k += 1
#plt.clf()
#ma = mean(rr,0) #straight mean response across spectra
#ema = std(rr,0)/sqrt(k) #uncertainty in mean
mw = sum(ww*rr,0)/sum(ww,0)#weighted mean
emw = 1./sqrt(sum(ww,0)) #uncertainty in w. mean
me = median(rr,0) #median
ms = smooth(mw,51) #smoothed
mws = mw - ms #scatter around the smoothed data
ems = zeros(len(mw))
length = 51
for i in range(len(mw)): ems[i] = std(mws[max([0,i-length]):min([len(mws)-1,i+length])])
#now we compute the relative fiber transmission (including flux losses due to centering)
k = 0
a = zeros(len(ind_sp))
for i in ind_sp:
j = ind_sf[k]
a[k] = mean(rr[k,:] / ms)
print(i,j,a[k],fmp['fiber_ra'][j],fmp['fiber_dec'][j],fmp['gaia_phot_g_mean_mag'][j],mean(y[j,:]))
k += 1
print('n, median(emw/mw), median(ems/mw)=',k, median(emw/mw),median(ems/mw))
return(x,mw,emw,ms,ems,a)
def calibrate(res,sframe):
#observations
sf=fits.open(sframe)
fmp=sf['fibermap'].data
x=sf['wavelength'].data
y=sf['flux'].data
ivar=sf['ivar'].data
mask=sf['mask'].data
resolution=sf['resolution'].data
for j in range(len(fmp['fiber_ra'])):
y[j,:] = y[j,:] / res
y[j,:] = y[j,:] / x * (hplanck*1e7) * (clight*1e2) # photons/cm2/s/AA -> erg/cm2/s/AA
ivar[j,:] = ivar[j,:] * x**2 / (hplanck*1e7)**2 / (clight*1e2)**2
y[j,:] = y[j,:] * 1e17
ivar[j,:] = ivar[j,:] * 1e-34
hdu0=fits.PrimaryHDU()
now = datetime.datetime.fromtimestamp(time.time())
nowstr = now.isoformat()
nowstr = nowstr[:nowstr.rfind('.')]
hdu0.header['DATE'] = nowstr
#get versions and enter then in primary header
ver = get_versions()
for entry in ver.keys(): hdu0.header[entry] = ver[entry]
hdulist = [hdu0]
npix = len(x)
entry = sframe[7]
print(entry,npix)
hdu = fits.ImageHDU(name='WAVELENGTH', data=x)
hdulist.append(hdu)
hdu = fits.ImageHDU(name='FLUX', data=y)
hdulist.append(hdu)
hdu = fits.ImageHDU(name='IVAR', data=ivar)
hdulist.append(hdu)
hdu = fits.ImageHDU(name='MASK', data=mask)
hdulist.append(hdu)
hdu = fits.ImageHDU(name='RESOLUTION', data=resolution)
hdulist.append(hdu)
hdu=fits.BinTableHDU.from_columns(fmp, name='FIBERMAP')
hdulist.append(hdu)
hdul =fits.HDUList(hdulist)
hdul.writeto('f'+sframe[1:])
return None
#get dependencies versions, shamelessly copied from rvspec (Koposov's code)
def get_dep_versions():
"""
Get Packages versions
"""
packages = [
'numpy', 'astropy', 'matplotlib', 'scipy',
'yaml'
]
# Ideally you need to check that the list here matches the requirements.txt
ret = {}
for curp in packages:
ret[curp[:8]] = importlib.import_module(curp).__version__
ret['python'] = str.split(sys.version, ' ')[0]
return ret
#find out versions
def get_versions():
ver = get_dep_versions()
ver['piferre'] = version
log1file = glob.glob("*.log_01")
fversion = 'unknown'
if len(log1file) < 1:
print("Warning: cannot find any *.log_01 file in the working directory")
else:
l1 = open(log1file[0],'r')
#while 1:
# line = l1.readline()
for line in l1:
if 'f e r r e' in line:
entries = line.split()
fversion = entries[-1][1:]
break
l1.close()
ver['ferre'] = fversion
return(ver)
#get the maximum value of 'ellapsed time' (wall time) in all ferre std. output (log_*) files
def get_ferre_timings(proot):
seconds = 0.0
val = 0.
logfiles=glob.glob(proot+'.log_*')
for entry in logfiles:
f=open(entry,'r')
lines = tail(f,100)
for line in lines:
if 'ellapsed' in line:
flds = line.split()
val = float(flds[2])
if val > seconds: seconds=val
f.close()
return(seconds)
def tail(f, lines=1, _buffer=4098):
#copied from https://stackoverflow.com/users/1889809/glenbot
"""Tail a file and get X lines from the end"""
# place holder for the lines found
lines_found = []
# block counter will be multiplied by buffer
# to get the block size from the end
block_counter = -1
# loop until we find X lines
while len(lines_found) < lines:
try:
f.seek(block_counter * _buffer, os.SEEK_END)
except IOError: # either file is too small, or too many lines requested
f.seek(0)
lines_found = f.readlines()
break
lines_found = f.readlines()
# we found enough lines, get out
# Removed this line because it was redundant the while will catch
# it, I left it for history
# if len(lines_found) > lines:
# break
# decrement the block counter to get the
# next X bytes
block_counter -= 1
return lines_found[-lines:]
#get the time assigned in slurm for the calculation
def get_slurm_timings(proot):
seconds = nan
f=open(proot+'.slurm','r')
for line in f:
if '--time' in line:
entries = line.split()
minutes = float(entries[1][7:])
seconds = minutes*60.
break
return(seconds)
#get the number of cores assigned in slurm for the calculation
def get_slurm_cores(proot):
ncores = 0
f=open(proot+'.slurm','r')
for line in f:
if '--cpus-per-task' in line:
entries = line.split()
ncores = int(entries[1][16:])
break
return(ncores)
#write piferre param. output
def write_tab_fits(root, path=None, config='desi-n.yaml'):
conf=load_conf(config,confdir=confdir)
if path is None: path=""
proot=os.path.join(path,root)
grids=conf['grids']
v=glob.glob(proot+".vrd")
o=glob.glob(proot+".opf")
t=glob.glob(proot+".opt")
#m=glob.glob(proot+".mdl")
#n=glob.glob(proot+".nrd")
if 'elem' in conf:
a=[]
for entry in conf['elem']:
a.append(proot+".oaf."+entry)
prox=[]
proxies=conf['proxy']
for synth in grids:
labels=conf[synth]['param']['labels']
indproxies=zeros(len(proxies),dtype=int)
j = 0
for entry in proxies:
i = 1
for entry2 in labels:
if entry == entry2: indproxies[j] = i
i = i + 1
j = j + 1
prox.append(indproxies)
fmp=glob.glob(proot+".fmp.fits")
scr=glob.glob(proot+".scr.fits")
if len(fmp) > 0:
ff=fits.open(fmp[0])
fibermap=ff[1]
if len(scr) > 0:
fs=fits.open(scr[0])
scores=fs[1]
success=[]
targetid=[]
target_ra=[]
target_dec=[]
ref_id=[]
ref_cat=[]
srcfile=[]
bestgrid=[]
teff=[]
logg=[]
feh=[]
alphafe=[]
micro=[]
covar=[]
elem=[]
elem_err=[]
snr_med=[]
chisq_tot=[]
rv_adop=[]
rv_err=[]
vf=open(v[0],'r')
of=open(o[0],'r')
if len(t) > 0: tf=open(t[0],'r')
#set the stage for extracting abundances from oaf files
if 'elem' in conf:
af=[]
i = 0
for entry in conf['elem']:
af.append(open(a[i],'r'))
i = i + 1
for line in of:
cells=line.split()
k = int(cells[0]) # the very first line gives the index (1,2...) for the successful grid
bestgrid.append(grids[k-1])
cells = cells[1:]
#for N dim (since COVPRINT=1 in FERRE), there are m= 4 + N*(2+N) cells
#and likewise we can calculate N = sqrt(m-3)-1
m=len(cells)
assert (m > 6), 'Error, the file '+o[0]+' has less than 7 columns, which would correspond to ndim=2'
ndim=int(sqrt(m-3)-1)
cov = zeros((5,5)) #order is given by the 5-d kurucz grids ([Fe/H], [a/Fe], micro, Teff, logg)
line = vf.readline()
vcells=line.split()
if len(t) > 0:
line = tf.readline()
tcells=line.split()
if (ndim == 2):
#white dwarfs 2 dimensions: id, 2 par, 2err, 0., med_snr, lchi, 2x2 cov
feh.append(-10.)
if len(t) > 0:
teff.append(float(tcells[1]))
else:
teff.append(float(cells[1]))
logg.append(float(cells[2]))
alphafe.append(nan)
micro.append(nan)
chisq_tot.append(10.**float(cells[3+2*ndim]))
snr_med.append(float(cells[2+2*ndim]))
rv_adop.append(float(vcells[6])*clight/1e3)
rv_err.append(float(vcells[7])*clight/1e3)
cov[3:,3:] = reshape(array(cells[4+2*ndim:],dtype=float),(2,2))
covar.append(cov)
elif (ndim == 3):
#Kurucz grids with 3 dimensions: id, 3 par, 3 err, 0., med_snr, lchi, 3x3 cov
#see Allende Prieto et al. (2018, A&A)
feh.append(float(cells[1]))
if len(t) > 0:
teff.append(float(tcells[2]))
else:
teff.append(float(cells[2]))
logg.append(float(cells[3]))
alphafe.append(nan)
micro.append(nan)
chisq_tot.append(10.**float(cells[3+2*ndim]))
snr_med.append(float(cells[2+2*ndim]))
rv_adop.append(float(vcells[6])*clight/1e3)