-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMDbTextCategorizationReasoningByEliminationDemoSparse.py
108 lines (86 loc) · 3.92 KB
/
IMDbTextCategorizationReasoningByEliminationDemoSparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
import logging
import numpy as np
import keras
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from keras.datasets import imdb
from sklearn.feature_extraction.text import CountVectorizer
from tmu.models.classification.vanilla_classifier import TMClassifier
from tmu.tools import BenchmarkTimer
from time import time
_LOGGER = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
profile_size = 50
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_clauses", default=1000, type=int)
parser.add_argument("--T", default=10000, type=int)
parser.add_argument("--s", default=1.0, type=float)
parser.add_argument("--device", default="GPU", type=str)
parser.add_argument("--weighted_clauses", default=True, type=bool)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--clause_drop_p", default=0.0, type=float)
parser.add_argument("--max-ngram", default=2, type=int)
parser.add_argument("--features", default=10000, type=int)
parser.add_argument("--imdb-num-words", default=10000, type=int)
parser.add_argument("--imdb-index-from", default=2, type=int)
args = parser.parse_args()
_LOGGER.info("Preparing dataset")
train, test = keras.datasets.imdb.load_data(num_words=args.imdb_num_words, index_from=args.imdb_index_from)
train_x, train_y = train
test_x, test_y = test
word_to_id = keras.datasets.imdb.get_word_index()
word_to_id = {k: (v + args.imdb_index_from) for k, v in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2
_LOGGER.info("Preparing dataset.... Done!")
_LOGGER.info("Producing bit representation...")
id_to_word = {value: key for key, value in word_to_id.items()}
training_documents = []
for i in range(train_y.shape[0]):
terms = []
for word_id in train_x[i]:
terms.append(id_to_word[word_id].lower())
training_documents.append(terms)
testing_documents = []
for i in range(test_y.shape[0]):
terms = []
for word_id in test_x[i]:
terms.append(id_to_word[word_id].lower())
testing_documents.append(terms)
vectorizer_X = CountVectorizer(
tokenizer=lambda s: s,
token_pattern=None,
ngram_range=(1, args.max_ngram),
lowercase=False,
binary=True,
min_df=5
)
X_train = vectorizer_X.fit_transform(training_documents)
feature_names = vectorizer_X.get_feature_names_out()
Y_train = train_y.astype(np.uint32)
print(X_train.shape)
X_test = vectorizer_X.transform(testing_documents)
Y_test = test_y.astype(np.uint32)
_LOGGER.info("Producing bit representation... Done!")
X_train = X_train.astype(np.uint32)
X_test = X_test.astype(np.uint32)
tm = TMClassifier(args.num_clauses, args.T, args.s, platform='CPU_sparse', weighted_clauses=args.weighted_clauses, absorbing=100, literal_insertion_state=127, literal_sampling=0.05)
_LOGGER.info(f"Running {TMClassifier} for {args.epochs}")
for epoch in range(args.epochs):
training_start = time()
tm.fit(X_train, Y_train)
training_stop = time()
absorbed = 0.0
unallocated = 0
for i in range(2):
for j in range(args.num_clauses):
absorbed += 1.0 - (tm.number_of_include_actions(i, j) + tm.number_of_exclude_actions(i, j)) / (X_train.shape[1]*2)
unallocated += tm.number_of_unallocated_literals(i, j)
absorbed = 100 * absorbed / (2*args.num_clauses)
testing_start = time()
result = 100 * (tm.predict(X_test) == Y_test).mean()
testing_stop = time()
print("Accuracy: %.2f%% Absorbed: %.2f%% Unallocated: %d Training time: %.1f Testing time: %.1f" % (result, absorbed, unallocated, training_stop-training_start, testing_stop-testing_start))