-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMDbTextCategorizationReasoningByEliminationDemo.py
143 lines (111 loc) · 5.27 KB
/
IMDbTextCategorizationReasoningByEliminationDemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import logging
import numpy as np
import keras
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from keras.datasets import imdb
from sklearn.feature_extraction.text import CountVectorizer
from tmu.models.classification.vanilla_classifier import TMClassifier
from tmu.tools import BenchmarkTimer
_LOGGER = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
profile_size = 50
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_clauses", default=1000, type=int)
parser.add_argument("--T", default=10000, type=int)
parser.add_argument("--s", default=1.0, type=float)
parser.add_argument("--device", default="GPU", type=str)
parser.add_argument("--weighted_clauses", default=True, type=bool)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--clause_drop_p", default=0.0, type=float)
parser.add_argument("--max-ngram", default=2, type=int)
parser.add_argument("--features", default=10000, type=int)
parser.add_argument("--imdb-num-words", default=10000, type=int)
parser.add_argument("--imdb-index-from", default=2, type=int)
args = parser.parse_args()
_LOGGER.info("Preparing dataset")
train, test = keras.datasets.imdb.load_data(num_words=args.imdb_num_words, index_from=args.imdb_index_from)
train_x, train_y = train
test_x, test_y = test
word_to_id = keras.datasets.imdb.get_word_index()
word_to_id = {k: (v + args.imdb_index_from) for k, v in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2
_LOGGER.info("Preparing dataset.... Done!")
_LOGGER.info("Producing bit representation...")
id_to_word = {value: key for key, value in word_to_id.items()}
training_documents = []
for i in range(train_y.shape[0]):
terms = []
for word_id in train_x[i]:
terms.append(id_to_word[word_id].lower())
training_documents.append(terms)
testing_documents = []
for i in range(test_y.shape[0]):
terms = []
for word_id in test_x[i]:
terms.append(id_to_word[word_id].lower())
testing_documents.append(terms)
vectorizer_X = CountVectorizer(
tokenizer=lambda s: s,
token_pattern=None,
ngram_range=(1, args.max_ngram),
lowercase=False,
binary=True
)
X_train = vectorizer_X.fit_transform(training_documents)
feature_names = vectorizer_X.get_feature_names_out()
Y_train = train_y.astype(np.uint32)
X_test = vectorizer_X.transform(testing_documents)
Y_test = test_y.astype(np.uint32)
_LOGGER.info("Producing bit representation... Done!")
_LOGGER.info("Selecting Features....")
SKB = SelectKBest(chi2, k=args.features)
SKB.fit(X_train, Y_train)
selected_features = SKB.get_support(indices=True)
X_train = SKB.transform(X_train).toarray().astype(np.uint32)
X_test = SKB.transform(X_test).toarray().astype(np.uint32)
_LOGGER.info("Selecting Features.... Done!")
tm = TMClassifier(args.num_clauses, args.T, args.s, platform=args.device, weighted_clauses=args.weighted_clauses,
clause_drop_p=args.clause_drop_p)
_LOGGER.info(f"Running {TMClassifier} for {args.epochs}")
for epoch in range(args.epochs):
benchmark1 = BenchmarkTimer(logger=_LOGGER, text="Training Time")
with benchmark1:
tm.fit(X_train, Y_train)
benchmark2 = BenchmarkTimer(logger=_LOGGER, text="Testing Time")
with benchmark2:
result = 100 * (tm.predict(X_test) == Y_test).mean()
_LOGGER.info(f"Epoch: {epoch + 1}, Accuracy: {result:.2f}, Training Time: {benchmark1.elapsed():.2f}s, "
f"Testing Time: {benchmark2.elapsed():.2f}s")
print("\nPositive Polarity:", end=' ')
literal_importance = tm.literal_importance(1, negated_features=False, negative_polarity=False).astype(np.int32)
sorted_literals = np.argsort(-1*literal_importance)[0:profile_size]
for k in sorted_literals:
if literal_importance[k] == 0:
break
print(feature_names[selected_features[k]], end=' ')
literal_importance = tm.literal_importance(1, negated_features=True, negative_polarity=False).astype(np.int32)
sorted_literals = np.argsort(-1*literal_importance)[0:profile_size]
for k in sorted_literals:
if literal_importance[k] == 0:
break
print("¬'" + feature_names[selected_features[k - args.features]] + "'", end=' ')
print()
print("\nNegative Polarity:", end=' ')
literal_importance = tm.literal_importance(1, negated_features=False, negative_polarity=True).astype(np.int32)
sorted_literals = np.argsort(-1*literal_importance)[0:profile_size]
for k in sorted_literals:
if literal_importance[k] == 0:
break
print(feature_names[selected_features[k]], end=' ')
literal_importance = tm.literal_importance(1, negated_features=True, negative_polarity=True).astype(np.int32)
sorted_literals = np.argsort(-1*literal_importance)[0:profile_size]
for k in sorted_literals:
if literal_importance[k] == 0:
break
print("¬'" + feature_names[selected_features[k - args.features]] + "'", end=' ')
print()