-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMDbConvolutionEmbeddingWordPrediction.py
162 lines (136 loc) · 6.53 KB
/
IMDbConvolutionEmbeddingWordPrediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import keras
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from keras.datasets import imdb
from time import time
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import f1_score, top_k_accuracy_score
import argparse
from collections import deque
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix
from PyCoalescedTsetlinMachineCUDA.tm import MultiClassConvolutionalTsetlinMachine2D, MultiClassTsetlinMachine
parser = argparse.ArgumentParser()
parser.add_argument("--num_clauses", default=10000, type=int)
parser.add_argument("--T", default=1000, type=int)
parser.add_argument("--s", default=10.0, type=float)
parser.add_argument("--hypervector_size", default=512, type=int)
parser.add_argument("--convolution_window", default=1, type=int)
parser.add_argument("--bits", default=256, type=int)
parser.add_argument("--epochs", default=100, type=int)
parser.add_argument("--batches", default=100, type=int)
parser.add_argument("--skip", default=25, type=int)
parser.add_argument("--window_size", default=2, type=int)
parser.add_argument("--number_of_examples", default=5000, type=int)
parser.add_argument("--imdb_num_words", default=1000, type=int)
parser.add_argument("--imdb_index_from", default=2, type=int)
args = parser.parse_args()
print("Downloading dataset...")
train,test = keras.datasets.imdb.load_data(num_words=args.imdb_num_words, index_from=args.imdb_index_from)
train_x, train_y = train
test_x, test_y = test
#train_x = train_x[0:1000]
#train_y = train_y[0:1000]
#test_x = test_x[0:1000]
#test_y = test_y[0:1000]
word_to_id = keras.datasets.imdb.get_word_index()
word_to_id = {k:(v+args.imdb_index_from) for k,v in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2
id_to_word = {value:key for key,value in word_to_id.items()}
# Read from file instead, otherwise the same
print("Retrieving embeddings...")
indexes = np.arange(args.hypervector_size, dtype=np.uint32)
encoding = {}
for i in range(args.imdb_num_words+args.imdb_index_from):
encoding[i] = np.random.choice(indexes, size=(args.bits), replace=False)
# encoding = {}
# f = open("/data/near-lossless-binarization/binary_vectors_512.vec", "r")
# line = f.readline()
# line = f.readline().strip()
# while line:
# entries = line.split(" ")
# if entries[0] in word_to_id:
# values = np.unpackbits(np.fromstring(" ".join(entries[1:]), dtype=np.int64, sep=' ').view(np.uint8))
# encoding[word_to_id[entries[0]]] = np.unpackbits(np.fromstring(" ".join(entries[1:]), dtype=np.int64, sep=' ').view(np.uint8)).nonzero()
# line = f.readline().strip()
# f.close()
print("Producing bit representation...")
window = deque([])
number_of_training_examples = 0
for e in range(train_y.shape[0]):
for word_id in train_x[e]:
if word_id in encoding:
if len(window) == args.window_size:
if word_id >= args.skip + args.imdb_index_from:
number_of_training_examples += 1
window.pop()
window.appendleft(word_id)
print(number_of_training_examples)
X_train = np.zeros((number_of_training_examples, args.window_size, 1, args.hypervector_size), dtype=np.uint32)
Y_train = np.zeros(number_of_training_examples, dtype=np.uint32)
window = deque([])
training_example_id = 0
for e in range(train_y.shape[0]):
for word_id in train_x[e]:
if word_id in encoding:
if len(window) == args.window_size:
if word_id >= args.skip + args.imdb_index_from:
for i in range(args.window_size):
X_train[training_example_id, i, 0][encoding[window[i]]] = 1
Y_train[training_example_id] = word_id - args.skip - args.imdb_index_from
training_example_id += 1
window.pop()
window.appendleft(word_id)
window = deque([])
number_of_testing_examples = 0
for e in range(test_y.shape[0]):
for word_id in test_x[e]:
if word_id in encoding:
if len(window) == args.window_size:
if word_id >= args.skip + args.imdb_index_from:
number_of_testing_examples += 1
window.pop()
window.appendleft(word_id)
print(number_of_testing_examples)
X_test = np.zeros((number_of_testing_examples, args.window_size, 1, args.hypervector_size), dtype=np.uint32)
Y_test = np.zeros(number_of_testing_examples, dtype=np.uint32)
window = deque([])
testing_example_id = 0
for e in range(test_y.shape[0]):
for word_id in test_x[e]:
if word_id in encoding:
if len(window) == args.window_size:
if word_id >= args.skip + args.imdb_index_from:
for i in range(args.window_size):
X_test[testing_example_id, i, 0][encoding[window[i]]] = 1
Y_test[testing_example_id] = word_id - args.skip - args.imdb_index_from
testing_example_id += 1
window.pop()
window.appendleft(word_id)
batch_size_train = Y_train.shape[0] // args.batches
batch_size_test = Y_test.shape[0] // args.batches
tm = MultiClassConvolutionalTsetlinMachine2D(args.num_clauses, args.T, args.s, (args.convolution_window, 1))
for i in range(args.epochs):
for batch in range(args.batches):
print("Fit")
start_training = time()
tm.fit(X_train[batch*batch_size_train:(batch+1)*batch_size_train], Y_train[batch*batch_size_train:(batch+1)*batch_size_train], epochs=1, incremental=True)
stop_training = time()
print("Predict Test")
start_testing = time()
Y_test_score = np.swapaxes(tm.score(X_test[batch*batch_size_test:(batch+1)*batch_size_test]), 0, 1)
Y_test_predicted = np.argmax(Y_test_score, axis=1)
result_test = 100*(Y_test_predicted == Y_test[batch*batch_size_test:(batch+1)*batch_size_test]).mean()
f1_test = 100*f1_score(Y_test[batch*batch_size_test:(batch+1)*batch_size_test], Y_test_predicted, average='macro')
top_k_accuracy_test = 100*top_k_accuracy_score(Y_test[batch*batch_size_test:(batch+1)*batch_size_test], Y_test_score, k=10)
stop_testing = time()
print("Predict Train")
Y_train_score = np.swapaxes(tm.score(X_train[batch*batch_size_train:(batch+1)*batch_size_train]), 0, 1)
Y_train_predicted = np.argmax(Y_train_score, axis=1)
result_train = 100*(Y_train_predicted == Y_train[batch*batch_size_train:(batch+1)*batch_size_train]).mean()
f1_train = 100*f1_score(Y_train[batch*batch_size_train:(batch+1)*batch_size_train], Y_train_predicted, average='macro')
top_k_accuracy_train = 100*top_k_accuracy_score(Y_train[batch*batch_size_train:(batch+1)*batch_size_train], Y_train_score, k=10)
print("#%d/%d F1 Test: %.2f%% F1 Train: %.2f%% Top-k Test: %.2f%% Top-k Train: %.2f%% Training: %.2fs Testing: %.2fs" % (batch+1, i+1, f1_test, f1_train, top_k_accuracy_test, top_k_accuracy_train, stop_training-start_training, stop_testing-start_testing))