forked from AnonymScholar/SpMT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
96 lines (82 loc) · 3.68 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import time
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.utils import save_image
from options.demo_options import DemoOptions
from models.pix2pix_model import Pix2PixModel
from models.networks.sync_batchnorm import DataParallelWithCallback
opt = DemoOptions().parse()
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
trans = transforms.Compose([transforms.ToTensor(),
normalize])
def denorm(tensor):
device = tensor.device
std = torch.Tensor([0.5, 0.5, 0.5]).reshape(-1, 1, 1).to(device)
mean = torch.Tensor([0.5, 0.5, 0.5]).reshape(-1, 1, 1).to(device)
res = torch.clamp(tensor * std + mean, 0, 1)
return res
model = Pix2PixModel(opt)
if len(opt.gpu_ids) > 0:
model = DataParallelWithCallback(model,device_ids=opt.gpu_ids)
model.eval()
if not os.path.exists(opt.result_dir):
os.mkdir(opt.result_dir)
import data
dataloader = iter(data.create_dataloader(opt))
for i in range(opt.demo_nums):
print(i,'/',opt.demo_nums,' demo')
input_data = []
input_data.append(dataloader.next())
if opt.demo_mode == 'partial':
input_data.append(dataloader.next())
input_data.append(dataloader.next())
elif opt.demo_mode == 'multiple_refs':
input_data.append(dataloader.next())
input_data.append(dataloader.next())
input_data.append(dataloader.next())
elif opt.demo_mode not in ['normal', 'removal', 'interpolate']:
print('|demo_mode| is invalid!')
break
time_start = time.time()
outs = model(input_data, mode='inference')
outs = [outs[i].cpu() for i in range(len(outs))]
time_end = time.time()
print(time_end - time_start)
opt.output_name = f'{opt.result_dir}/{i}'
c = denorm(input_data[0]['nonmakeup'])
s0 = denorm(input_data[0]['makeup'])
if opt.demo_mode == 'normal':
demo = torch.cat([c, s0, denorm(outs[0])], 3)
save_image(demo, f'{opt.output_name}_demo.jpg')
print(f'result saved into files starting with {opt.output_name}_demo.jpg\n')
continue
if opt.demo_mode == 'removal':
demo = torch.cat([s0, c, denorm(outs[0]), denorm(outs[1]), denorm(outs[2])], 3)
save_image(demo, f'{opt.output_name}_removal_demo.jpg')
print(f'result saved into files starting with {opt.output_name}_removal_demo.jpg\n')
continue
if opt.demo_mode == 'interpolate':
demo = torch.cat([c, s0, denorm(outs[0]), denorm(outs[1]), denorm(outs[2])], 3)
save_image(demo, f'{opt.output_name}_interpolate_demo.jpg')
print(f'result saved into files starting with {opt.output_name}_interpolate_demo.jpg\n')
continue
s1 = denorm(input_data[1]['makeup'])
s2 = denorm(input_data[2]['makeup'])
if opt.demo_mode == 'partial':
demo = torch.cat([c, s0, s1, s2, denorm(outs[0])], 3)
save_image(demo, f'{opt.output_name}_partial_demo.jpg')
print(f'result saved into files starting with {opt.output_name}_partial_demo.jpg\n')
continue
s3 = denorm(input_data[3]['makeup'])
if opt.demo_mode == 'multiple_refs':
blank = torch.ones_like(s0)
row1 = torch.cat([s0, denorm(outs[0]), denorm(outs[1]), denorm(outs[2]), s1], 3)
row2 = torch.cat([blank, denorm(outs[3]), denorm(outs[4]), denorm(outs[5]), blank], 3)
row3 = torch.cat([s2, denorm(outs[6]), denorm(outs[7]), denorm(outs[8]), s3], 3)
demo = torch.cat([row1, row2, row3], 2)
save_image(demo, f'{opt.output_name}_multiple_refs_demo.jpg')
print(f'result saved into files starting with {opt.output_name}_multiple_refs_demo.jpg\n')