This repository has been archived by the owner on Oct 30, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_notext.py
415 lines (331 loc) · 13.6 KB
/
test_notext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from data_io import DataIO
from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import cross_val_score
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cross_validation import Bootstrap
from scipy.sparse import csr_matrix
from pprint import pprint
from time import time
import numpy as np
import joblib
import logging
from optparse import OptionParser
import sys
import pylab as pl
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import Ridge, RidgeCV, Lasso, LassoLars, LassoCV, LassoLarsCV
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveRegressor
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
#from sklearn.neighbors import KNeighborsRegressor
from sklearn.neighbors import NearestCentroid
from sklearn.utils.extmath import density
from sklearn.metrics import Scorer, mean_absolute_error
#from sklearn import metrics
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
# parse commandline arguments
op = OptionParser()
op.add_option("--report",
action="store_true", dest="print_report",
help="Print a detailed classification report.")
op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")
op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
help="Print the confusion matrix.")
op.add_option("--top10",
action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"
" for every classifier.")
op.add_option("--all_categories",
action="store_true", dest="all_categories",
help="Whether to use all categories or not.")
op.add_option("--use_hashing",
action="store_true",
help="Use a hashing vectorizer.")
op.add_option("--n_features",
action="store", type=int, default=2 ** 16,
help="n_features when using the hashing vectorizer.")
(opts, args) = op.parse_args()
if len(args) > 0:
op.error("this script takes no arguments.")
sys.exit(1)
print __doc__
op.print_help()
print
dio = DataIO("Settings_loc5.json")
submission = False
n_trees = 10
min_samples_split = 2
if submission:
type_n = "train_full"
type_v = "valid_full"
else:
type_n = "train"
type_v = "valid"
vectorizer = TfidfVectorizer(
sublinear_tf=True,
max_df=0.5,
stop_words='english'
)
#short_id = "tfidf_200f_l1"
short_id = "tfidf_05df_stopwords"
tfidf_columns = ["Title", "FullDescription", "LocationRaw"]
dio.make_counts(vectorizer, short_id, tfidf_columns, type_n, type_v)
#columns = ["Category", "ContractTime", "ContractType"]
columns = ["Category", "ContractTime", "ContractType", "Company", "SourceName"]
le_features = dio.get_le_features(columns, "train_full")
extra_features = dio.get_features(columns, type_n, le_features)
extra_valid_features = dio.get_features(columns, type_v, le_features)
#features = dio.join_features("%s_" + type_n + "_count_vector_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_features)
#validation_features = dio.join_features("%s_" + type_v + "_count_vector_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_valid_features)
features = dio.join_features("%s_" + type_n + "_" + short_id + "_matrix",
tfidf_columns,
extra_features, sparse=True)
validation_features = dio.join_features("%s_" + type_v + "_" + short_id + "_matrix",
tfidf_columns,
extra_valid_features, sparse=True)
print features.shape
print validation_features.shape
salaries = dio.get_salaries(type_n, log=True)
if not submission:
valid_salaries = dio.get_salaries(type_v, log=True)
print salaries.shape
bs = Bootstrap(len(salaries), random_state=45, train_size=0.6)
train_index, test_index = next(iter(bs))
param = """Normal count vector with max 200. New submission which is repeatable.
and nicer
Bag of Words: %s\n
Encoded cols: %s\n
Logged
vectorizer = TfidfVectorizer(
sublinear_tf=True,
max_df=0.5,
stop_words='english'
)
""" % (",".join(tfidf_columns), ",".join(columns))
features = csr_matrix(features)
#features = features[train_index]
#salaries = salaries[train_index]
print "features", features.shape
print "valid features", validation_features.shape
def log_mean_absolute_error(y_true, y_pred):
return mean_absolute_error(np.exp(y_true), np.exp(y_pred))
metric = dio.error_metric
error_scorer = Scorer(log_mean_absolute_error, greater_is_better=False)
if opts.select_chi2:
print ("Extracting %d best features by a chi-squared test" %
opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
features = ch2.fit_transform(features, salaries)
validation_features = ch2.transform(validation_features)
print "done in %fs" % (time() - t0)
print
#features = features.toarray()
#validation_features = validation_features.toarray()
#print "features", features.shape
#print "valid features", validation_features.shape
X_train = features
y_train = salaries
X_test = validation_features
y_test = valid_salaries
def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."
# mapping from integer feature name to original token string
feature_names = None
###############################################################################
# Benchmark classifiers
def benchmark(clf):
print 80 * '_'
print "Training: "
print clf
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print "train time: %0.3fs" % train_time
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print "test time: %0.3fs" % test_time
score = metric(y_test, pred)
print "MAE: %0.3f" % score
if hasattr(clf, 'alpha_'):
print "Alpha", clf.alpha_
try:
if hasattr(clf, 'coef_'):
print "density: %f" % density(clf.coef_)
print "dimensionality: %d" % clf.coef_.shape[0]
print
except Exception as ex:
print ex
print
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time
results = []
#for clf, name in (
#(Ridge(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
##(Perceptron(n_iter=50, verbose=1, n_jobs=2, random_state=45), "Perceptron"),
#(PassiveAggressiveRegressor(n_iter=50, verbose=1, random_state=42), "Passive-Aggressive")):
#print 80 * '='
#print name
#results.append(benchmark(clf))
benchmark(Ridge(tol=1e-2, solver="lsqr"))
#results.append(benchmark(PassiveAggressiveRegressor(n_iter=150, verbose=1, random_state=42)))
#for penalty in ["l2", "l1"]:
#print 80 * '='
#print "%s penalty" % penalty.upper()
## Train Liblinear model
##results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,
##dual=False, tol=1e-3)))
## Train SGD model
#results.append(benchmark(SGDRegressor(alpha=.0001, n_iter=50, verbose=1,
#penalty=penalty)))
# Train SGD with Elastic Net penalty
#print 80 * '='
#print "Elastic-Net penalty"
#results.append(benchmark(SGDRegressor(alpha=.0001, n_iter=50, verbose=1,
#penalty="elasticnet")))
# Train NearestCentroid without threshold
#print 80 * '='
#print "NearestCentroid (aka Rocchio classifier)"
#results.append(benchmark(NearestCentroid()))
# Train sparse Naive Bayes classifiers
#print 80 * '='
#print "Naive Bayes"
#results.append(benchmark(MultinomialNB(alpha=.01)))
#results.append(benchmark(BernoulliNB(alpha=.01)))
class L1LinearSVC(LinearSVC):
def fit(self, X, y):
# The smaller C, the stronger the regularization.
# The more regularization, the more sparsity.
self.transformer_ = LinearSVC(penalty="l1",
dual=False, tol=1e-3)
X = self.transformer_.fit_transform(X, y)
return LinearSVC.fit(self, X, y)
def predict(self, X):
X = self.transformer_.transform(X)
return LinearSVC.predict(self, X)
#print 80 * '='
#print "LinearSVC with L1-based feature selection"
#results.append(benchmark(L1LinearSVC()))
# make some plots
#indices = np.arange(len(results))
#results = [[x[i] for x in results] for i in xrange(4)]
#clf_names, score, training_time, test_time = results
#training_time = np.array(training_time) / np.max(training_time)
#test_time = np.array(test_time) / np.max(test_time)
#pl.title("Score")
#pl.barh(indices, score, .2, label="score", color='r')
#pl.barh(indices + .3, training_time, .2, label="training time", color='g')
#pl.barh(indices + .6, test_time, .2, label="test time", color='b')
#pl.yticks(())
#pl.legend(loc='best')
#pl.subplots_adjust(left=.25)
#for i, c in zip(indices, clf_names):
#pl.text(-.3, i, c)
#pl.show()
def make_grid_search(pipeline, parameters, model_name, params):
print model_name
grid_search = GridSearchCV(pipeline, parameters, n_jobs=4, verbose=3,
#loss_func=metric,
#scoring="f1",
scoring=error_scorer,
iid=False,
refit=True)
#model_name = "ExtraTree_min_sample2_10trees_gridcv_desc_log"
print("Performing grid search...")
print("pipeline:", pipeline) # [name for name, _ in pipeline.steps])
print("parameters:")
pprint(parameters)
t0 = time()
grid_search.fit(features, salaries)
print("done in %0.3fs" % (time() - t0))
print()
print("Best score: %0.3f" % grid_search.best_score_)
print("Best parameters set:")
best_parameters = grid_search.best_params_
for param_name in sorted(parameters.keys()):
print("\t%s: %r" % (param_name, best_parameters[param_name]))
best_estimator = pipeline.set_params(**best_parameters)
params = params + " ", grid_search.cv_scores_
dio.save_model(best_estimator, model_name, mae_cv=grid_search.best_score_, parameters=params)
print grid_search.cv_scores_
prediction = grid_search.predict(validation_features)
dio.save_prediction(model_name, prediction, type_v)
parameters = {
"alpha": [0.1, 1, 10],
}
make_grid_search(Ridge(tol=1e-2, solver="lsqr"), parameters, "Ridge_tfidf_05d", param)
#make_grid_search(Lasso(), parameters, "Lasso_tfidf_05d", param)
#make_grid_search(LassoLars(), parameters, "LassoLars_tfidf_05d", param)
a=5/0
benchmark(LassoCV(max_iter=100, verbose=1))
benchmark(LassoLarsCV(n_jobs=-1, max_iter=100, max_n_alphas=50, verbose=1))
n_trees=20
min_samples_split=2
name = "ExtraTrees_min_sample%d_%dtrees_tfidf-05d_BoW-titleFullRaw-AllColumns_new_log" % (min_samples_split, n_trees)
classifier = ExtraTreesRegressor(n_estimators=n_trees,
#classifier = RandomForestRegressor(n_estimators=n_trees,
verbose=2,
n_jobs=4, # 2 jobs on submission / 4 on valid test
oob_score=True,
min_samples_split=min_samples_split,
random_state=3465343)
classifier.fit(features, salaries)
#classifier = dio.load_model(name)
#predictions = classifier.predict(validation_features)
metric = dio.error_metric
mae = metric(valid_salaries, predictions)
print "MAE validation: ", mae
dio.save_model(classifier, name, mae, parameters=param)
dio.save_prediction(name, predictions, type_n=type_v)
importances = classifier.feature_importances_
std = np.std([tree.feature_importances_ for tree in classifier.estimators_],
axis=0)
indices = np.argsort(importances)[::-1]
f_names = map(lambda x: "Title(%d)" % x,range(1,201))
f_names.extend(map(lambda x: "Desc(%d)" % x,range(1,201)))
f_names.extend(map(lambda x: "LocR(%d)" % x,range(1,201)))
f_names.extend(columns)
num_feat = len(f_names)
# Print the feature ranking
print "Feature ranking:"
for f in xrange(len(indices)):
print "%d. feature %d %s (%f)" % (f + 1, indices[f], f_names[indices[f]], importances[indices[f]])
# Plot the feature importances of the forest
import pylab as pl
pl.figure()
pl.title("Feature importances")
pl.bar(xrange(len(indices)), importances[indices],
color="r", yerr=std[indices], align="center")
pl.xticks(xrange(len(indices)), indices)
pl.xlim([-1, len(indices)])
pl.show()
if mae > 6450:
print "MAE wors then normal"
os.exit()
#oob_predictions = classifier.oob_prediction_
#mae_oob = mean_absolute_error(salaries, oob_predictions)
#print "MAE OOB: ", mae_oob
classifier1 = ExtraTreesRegressor(n_estimators=n_trees,
verbose=1,
n_jobs=3,
oob_score=False,
min_samples_split=min_samples_split,
random_state=3465343)
scores = cross_val_score(classifier1, features, salaries, cv=3, score_func=metric, verbose=1)
print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
mae_cv = "%0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
dio.save_model(classifier, name, mae_cv=mae_cv, parameters=param)