This repository has been archived by the owner on Oct 30, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsubmission_splitted_category.py
158 lines (129 loc) · 6.52 KB
/
submission_splitted_category.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from data_io import DataIO
from sklearn.ensemble import ExtraTreesRegressor
#from sklearn.cross_validation import cross_val_score
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
dio = DataIO("Settings.json")
submission = False
n_trees = 10
min_samples_split = 2
if submission:
type_n = "train_full"
type_v = "valid_full"
else:
type_n = "train"
type_v = "valid"
vectorizer = CountVectorizer(
max_features=200,
)
short_id = "count_200f"
tfidf_columns = ["Title", "FullDescription", "LocationRaw"]
#dio.make_counts(vectorizer, short_id, tfidf_columns, type_n, type_v)
columns = ["Category", "ContractTime", "ContractType"]
le_features = dio.get_le_features(columns, "train_full")
extra_features = dio.get_features(columns, type_n, le_features)
extra_valid_features = dio.get_features(columns, type_v, le_features)
split_name = "Category"
#split_name = "ContractTime"
#split_name = "ContractType"
param = """Normal count vector with max 200. New submission which is repeatable.
and nicer
Extra_columns: %s
Splitted on %s and learned separately with extraTree
""" % (",".join(columns), split_name)
col_index = columns.index(split_name)
feature_category = extra_features[col_index]
validation_features_category = extra_valid_features[col_index]
#features = dio.join_features("%s_" + type_n + "_count_vector_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_features)
#validation_features = dio.join_features("%s_" + type_v + "_count_vector_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_valid_features).astype(np.int64)
features = dio.join_features("%s_" + type_n + "_" + short_id + "_matrix",
tfidf_columns,
extra_features)
validation_features = dio.join_features("%s_" + type_v + "_" + short_id + "_matrix",
tfidf_columns,
extra_valid_features)
salaries = dio.get_salaries(type_n, log=True).astype(np.int64)
if not submission:
valid_salaries = dio.get_salaries(type_v, log=True)
best_predictions = dio.get_prediction(model_name="ExtraTree_min_sample2_20trees_200f_noNorm_categoryTimeType_log", type_n="valid")
par = " classed from 0-11500 then 4 classes to 100 000 and to end NoNormal classTypeTime"
def encode_salaries(salaries, bins):
bin_edges = np.linspace(11500.0, 100000, bins + 1, endpoint=True)
#hist, bin_edges = np.histogram(salaries, bins)
print np.diff(bin_edges)
idxs = np.searchsorted(bin_edges, salaries, side="right")
return idxs
#salaries_enc = encode_salaries(salaries, 4)
#valid_salaries_enc = encode_salaries(valid_salaries, 4)
print salaries.shape
metric = dio.error_metric
for bins in [4]: #range(10,15):
n_trees = 20
par = " Splited by category NoNormal classTypeTime salaries and valid"
name = "ExtraTree_min_sample%d_%dtrees_200f_noNorm_categoryTimeType_count_%s_split_new_log" % (min_samples_split, n_trees, split_name)
print name
num_classes = len(le_features[col_index].classes_)
print "classes:", num_classes
print le_features[col_index].classes_
param += "\nclasses: %d\n" % num_classes
def predict(class_id, param):
print "predicting: ", class_id
param += "\npredicting: %s\n" % (le_features[col_index].classes_[class_id],)
salaries_idx = np.where(feature_category == class_id)
valid_idx = np.where(validation_features_category == class_id)
param += "Salaries len: %d, valid len: %d\n" % (len(salaries_idx[0]), len(valid_idx[0]))
if len(salaries_idx[0]) == 0 or len(valid_idx[0]) == 0:
return [], None, param
classifier = ExtraTreesRegressor(n_estimators=n_trees,
verbose=0,
n_jobs=4, # 2 jobs on submission / 4 on valid test
oob_score=False,
min_samples_split=min_samples_split,
random_state=3465343)
print features[salaries_idx[0], :].shape
print salaries[salaries_idx].shape
print validation_features[0].shape
classifier.fit(features[salaries_idx[0], :], salaries[salaries_idx])
predictions_part = classifier.predict(validation_features[valid_idx[0]])
return predictions_part, valid_idx, param
predictions = np.zeros_like(valid_salaries)
for cur_class_id in range(num_classes):
predictions_part, idx, param = predict(cur_class_id, param)
if idx is not None:
predictions[idx] = predictions_part
mae_pred = metric(valid_salaries[idx], predictions_part)
mae_best_pred = metric(valid_salaries[idx], best_predictions[idx])
if mae_pred < mae_best_pred:
isbetter = "DA"
else:
isbetter = "nope"
ppara = "Curr MAE: %0.2f Best MAE: %0.2f %s\n" % (mae_pred, mae_best_pred, isbetter)
print ppara
param += ppara
if submission:
dio.save_prediction(name, predictions, type_n=type_v)
dio.write_submission(name + ".csv", predictions=predictions)
else:
dio.compare_valid_pred(valid_salaries, predictions)
metric = dio.error_metric
mae = metric(valid_salaries, predictions)
print "MAE validation: ", mae
dio.save_model(ExtraTreesRegressor(n_estimators=n_trees, min_samples_split=min_samples_split, random_state=3465343), name, mae, parameters=param)
dio.save_prediction(name, predictions, type_n=type_v)
#oob_predictions = classifier.oob_prediction_
#mae_oob = mean_absolute_error(salaries, oob_predictions)
#print "MAE OOB: ", mae_oob
#classifier1 = ExtraTreesRegressor(n_estimators=n_trees,
#verbose=1,
#n_jobs=3,
#oob_score=False,
#min_samples_split=min_samples_split,
#random_state=3465343)
#scores = cross_val_score(classifier1, features, salaries, cv=3, score_func=metric, verbose=1)
#print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
#mae_cv = "%0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
#dio.save_model(classifier, name, mae_cv=mae_cv, parameters=param)