This repository has been archived by the owner on Oct 30, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsubmission_splitted.py
139 lines (114 loc) · 5.86 KB
/
submission_splitted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from data_io import DataIO
from sklearn.ensemble import ExtraTreesRegressor
#from sklearn.cross_validation import cross_val_score
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
dio = DataIO("Settings.json")
submission = False
n_trees = 10
min_samples_split = 2
param = """Normal count vector with max 200. New submission which is repeatable.
and nicer
count_vector_titles = TfidfVectorizer(
read_column(train_filename, column_name),
max_features=200, norm='l2', smooth_idf=True, sublinear_tf=False, use_idf=True)
"""
if submission:
type_n = "train_full"
type_v = "valid_full"
else:
type_n = "train"
type_v = "valid"
vectorizer = CountVectorizer(
max_features=200,
)
short_id = "count_200f"
tfidf_columns = ["Title", "FullDescription", "LocationRaw"]
#dio.make_counts(vectorizer, short_id, tfidf_columns, type_n, type_v)
columns = ["Category", "ContractTime", "ContractType"]
le_features = dio.get_le_features(columns, "train_full")
extra_features = dio.get_features(columns, type_n, le_features)
extra_valid_features = dio.get_features(columns, type_v, le_features)
#features = dio.join_features("%s_" + type_n + "_count_vector_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_features)
#validation_features = dio.join_features("%s_" + type_v + "_count_vector_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_valid_features).astype(np.int64)
features = dio.join_features("%s_" + type_n + "_" + short_id + "_matrix",
tfidf_columns,
extra_features)
validation_features = dio.join_features("%s_" + type_v + "_" + short_id + "_matrix",
tfidf_columns,
extra_valid_features)
salaries = dio.get_salaries(type_n, log=True).astype(np.int64)
if not submission:
valid_salaries = dio.get_salaries(type_v, log=True)
par = " classed from 0-11500 then 4 classes to 100 000 and to end NoNormal classTypeTime"
def encode_salaries(salaries, bins):
bin_edges = np.linspace(11500.0, 100000, bins + 1, endpoint=True)
#hist, bin_edges = np.histogram(salaries, bins)
print np.diff(bin_edges)
idxs = np.searchsorted(bin_edges, salaries, side="right")
return idxs
#salaries_enc = encode_salaries(salaries, 4)
#valid_salaries_enc = encode_salaries(valid_salaries, 4)
print salaries.shape
metric = dio.error_metric
for bins in [4]: #range(10,15):
n_trees = 10
#salaries_enc = encode_salaries(salaries, bins)
#valid_salaries_enc = encode_salaries(valid_salaries, bins)
salaries_enc = dio.get_prediction(model_name="randomForest_tfidf_titleFullLoc_bin4", type_n="train_classes")
valid_salaries_enc = dio.get_prediction(model_name="randomForest_tfidf_titleFullLoc_bin4", type_n="valid_classes")
par = " classed from 0-11500 then %d classes to 100 000 and to end NoNormal classTypeTime salaries and valid predicted with randomForest_tfidf_titleFullLoc_bin4" % (bins,)
name = "ExtraTree_min_sample%d_%dtrees_200f_noNorm_categoryTimeType_count_rf10_%dsplit_new_log" % (min_samples_split, n_trees, bins)
print name
num_classes = salaries_enc.max()
print "classes:", num_classes
def predict(class_id):
print "predicting: ", class_id
salaries_idx = np.where(salaries_enc == class_id)
valid_idx = np.where(valid_salaries_enc == class_id)
if len(salaries_idx[0]) == 0 or len(valid_idx[0]) == 0:
return [], None
classifier = ExtraTreesRegressor(n_estimators=n_trees,
verbose=0,
n_jobs=4, # 2 jobs on submission / 4 on valid test
oob_score=False,
min_samples_split=min_samples_split,
random_state=3465343)
print features[salaries_idx[0], :].shape
print salaries[salaries_idx].shape
classifier.fit(features[salaries_idx[0], :], salaries[salaries_idx])
predictions_part = classifier.predict(validation_features[valid_idx[0]])
return predictions_part, valid_idx
predictions = np.zeros_like(valid_salaries)
for cur_class_id in range(num_classes + 1):
predictions_part, idx = predict(cur_class_id)
if idx is not None:
predictions[idx] = predictions_part
print "Part MAE: ", metric(valid_salaries[idx], predictions_part)
if submission:
dio.save_prediction(name, predictions, type_n=type_v)
dio.write_submission(name + ".csv", predictions=predictions)
else:
dio.compare_valid_pred(valid_salaries, predictions)
metric = dio.error_metric
mae = metric(valid_salaries, predictions)
print "MAE validation: ", mae
dio.save_model(ExtraTreesRegressor(), name, mae)
dio.save_prediction(name, predictions, type_n=type_v)
#oob_predictions = classifier.oob_prediction_
#mae_oob = mean_absolute_error(salaries, oob_predictions)
#print "MAE OOB: ", mae_oob
#classifier1 = ExtraTreesRegressor(n_estimators=n_trees,
#verbose=1,
#n_jobs=3,
#oob_score=False,
#min_samples_split=min_samples_split,
#random_state=3465343)
#scores = cross_val_score(classifier1, features, salaries, cv=3, score_func=metric, verbose=1)
#print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
#mae_cv = "%0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
#dio.save_model(classifier, name, mae_cv=mae_cv, parameters=param)