This repository has been archived by the owner on Oct 30, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsubmission_extra_new_cloud.py
157 lines (132 loc) · 6.37 KB
/
submission_extra_new_cloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from data_io import DataIO
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.cross_validation import cross_val_score
from os.path import join as path_join
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
import joblib
import cloud
import os
tfidf_columns = ["Title", "FullDescription", "LocationRaw"]
dio = DataIO("Settings.json")
vectorizer = TfidfVectorizer(
max_features=200,
norm='l1',
smooth_idf=True,
sublinear_tf=False,
use_idf=True
)
short_id = "tfidf_200f_l1"
type_n = "train"
type_v = "valid"
dio.make_counts(vectorizer, short_id, tfidf_columns, "train", "valid")
columns = ["Category", "ContractTime", "ContractType"]
le_features = dio.get_le_features(columns, "train_full")
extra_features = dio.get_features(columns, type_n, le_features)
extra_valid_features = dio.get_features(columns, type_v, le_features)
features = dio.join_features("%s_" + type_n + "_" + short_id + "_matrix",
tfidf_columns,
extra_features)
validation_features = dio.join_features("%s_" + type_v + "_" + short_id + "_matrix",
tfidf_columns,
extra_valid_features)
print features.shape
print validation_features.shape
run = raw_input("OK (Y/N)?")
print run
if run != "Y":
os.exit()
files = joblib.dump(features, "train_200f_noNorm_categoryTimeType_tfidfl1_features_jl", compress=9)
files1 = joblib.dump(validation_features, "train_200f_noNorm_categoryTimeType_tfidfl1_valid_features_jl", compress=9)
files.extend(files1)
print files
run = raw_input("OK (Y/N)?")
print run
if run != "Y":
os.exit()
for file_name in files:
cloud.volume.sync(file_name, "my-vol-job:")
def tfidf_cloud(n_trees):
dio = DataIO("/data/Settings_cloud.json")
submission = False
min_samples_split = 2
param = """Normal count vector with max 200. New submission which is repeatable.
and nicer
count_vector_titles = TfidfVectorizer(
read_column(train_filename, column_name),
max_features=200, norm='l1', smooth_idf=True, sublinear_tf=False, use_idf=True)
"""
if submission:
type_n = "train_full"
type_v = "valid_full"
else:
type_n = "train"
type_v = "valid"
#features = dio.join_features("%s_" + type_n + "_tfidf_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_features)
#validation_features = dio.join_features("%s_" + type_v + "_tfidf_matrix_max_f_200",
#["Title", "FullDescription", "LocationRaw"],
#extra_valid_features)
#np.save("train_200f_noNorm_categoryTimeType_tfidfl2_features", features)
#np.save("train_200f_noNorm_categoryTimeType_tfidfl2_valid_features", validation_features)
def load(filename):
return joblib.load(path_join("/data", filename))
features = load("train_200f_noNorm_categoryTimeType_tfidfl1_features_jl")
validation_features = load("train_200f_noNorm_categoryTimeType_tfidfl1_valid_features_jl")
print "features", features.shape
print "valid features", validation_features.shape
#salaries = dio.get_salaries(type_n, log=True)
#if not submission:
#valid_salaries = dio.get_salaries(type_v, log=True)
#np.save("train_200f_noNorm_categoryTimeType_tfidfl2_salaries", salaries)
#np.save("train_200f_noNorm_categoryTimeType_tfidfl2_valid_salaries", valid_salaries)
#joblib.dump(salaries, "train_200f_noNorm_categoryTimeType_tfidfl2_salaries_jl", compress=5)
#joblib.dump(valid_salaries, "train_200f_noNorm_categoryTimeType_tfidfl2_valid_salaries_jl", compress=5)
#TODO: valid salaries so narobe dumpane
salaries = load("train_200f_noNorm_categoryTimeType_tfidfl2_salaries_jl")
valid_salaries = load("train_200f_noNorm_categoryTimeType_tfidfl2_valid_salaries_jl")
dio.is_log = True
print salaries.shape
name = "ExtraTree_min_sample%d_%dtrees_200f_noNorm_categoryTimeType_tfidfl1_new_log" % (min_samples_split, n_trees)
print name
#dio.save_prediction("testni", np.array([1,2,3]), type_n="testno")
classifier = ExtraTreesRegressor(n_estimators=n_trees,
verbose=2,
n_jobs=4, # 2 jobs on submission / 4 on valid test
oob_score=False,
min_samples_split=min_samples_split,
random_state=3465343)
#dio.save_model(classifier, "testni_model", 99.)
classifier.fit(features, salaries)
predictions = classifier.predict(validation_features)
if submission:
dio.save_prediction(name, predictions, type_n=type_v)
dio.write_submission(name + ".csv", predictions=predictions)
else:
dio.compare_valid_pred(valid_salaries, predictions)
metric = dio.error_metric
mae = metric(valid_salaries, predictions)
print "MAE validation: ", mae
dio.save_model(classifier, name, mae)
dio.save_prediction(name, predictions, type_n=type_v)
##oob_predictions = classifier.oob_prediction_
##mae_oob = mean_absolute_error(salaries, oob_predictions)
##print "MAE OOB: ", mae_oob
#classifier1 = ExtraTreesRegressor(n_estimators=n_trees,
#verbose=1,
#n_jobs=4,
#oob_score=False,
#min_samples_split=min_samples_split,
#random_state=3465343)
#scores = cross_val_score(classifier1, features, salaries, cv=3, score_func=metric, verbose=1)
#print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
#mae_cv = "%0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
#dio.save_model(classifier, name, mae, mae_cv=mae_cv, parameters=param)
#jid = cloud.call(tfidf_cloud, 10, _type='f2', _cores=4, _env='sklearnPrecise', _vol="my-vol-job", _label="10 trees l1")
#jid = cloud.call(tfidf_cloud, 20, _type='f2', _cores=4, _env='sklearnPrecise', _vol="my-vol-job")
#print jid
#jid = cloud.call(tfidf_cloud, 30, _type='f2', _cores=4, _env='sklearnPrecise', _vol="my-vol-job")
#print jid
#jid = cloud.call(tfidf_cloud, 40, _type='f2', _cores=4, _env='sklearnPrecise', _vol="my-vol-job")
#print jid