This repository has been archived by the owner on Oct 30, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_knn.py
148 lines (124 loc) · 6.14 KB
/
run_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from data_io import (
get_paths,
read_column,
save_model,
label_encode_column_fit,
label_encode_column_fit_only,
label_encode_column_transform
)
from os.path import join as path_join
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import mean_absolute_error
from sklearn.cross_validation import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor, export_graphviz
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
import joblib
def log_mean_absolute_error(y_true, y_pred):
return mean_absolute_error(np.exp(y_true), np.exp(y_pred))
paths = get_paths("Settings_loc5.json")
data_dir = paths["data_path"]
cache_dir = path_join(data_dir, "tmp")
prediction_dir = path_join(data_dir, "predictions")
names = ["Category", "ContractTime", "ContractType", "Loc1", "Loc2", "Loc3", "Loc4", "Loc5", "Company", "SourceName"]
le_features = map(lambda x: label_encode_column_fit_only(
x, file_id="train_full_data_path", type_n="train_full"), names)
features = map(lambda (le, name): label_encode_column_transform(le, name, file_id="train_data_path", type_n="train"), zip(le_features, names))
description_length = map(len, read_column(paths["train_data_path"], "FullDescription"))
title_length = map(len, read_column(paths["train_data_path"], "Title"))
features.append(description_length)
features.append(title_length)
#le_features, features = zip(*features_les)
validation_features = map(lambda (le, name): label_encode_column_transform(le, name, file_id="valid_data_path", type_n="valid"), zip(le_features, names))
description_length = map(len, read_column(paths["valid_data_path"], "FullDescription"))
title_length = map(len, read_column(paths["valid_data_path"], "Title"))
validation_features.append(description_length)
validation_features.append(title_length)
names.extend(["Description_length", "Title_Length"])
features = np.vstack(features).T
validation_features = np.vstack(validation_features).T
print "features", features.shape
print "valid features", validation_features.shape
salaries = np.array(list(read_column(
paths["train_data_path"], "SalaryNormalized"))).astype(np.float64)
valid_salaries = np.array(list(read_column(
paths["valid_data_path"], "SalaryNormalized"))).astype(np.float64)
salaries = np.log(salaries)
valid_salaries = np.log(valid_salaries)
print salaries.shape
#for n_clusters in [8, 10, 15, 20, 25, 30]:
#for n_clusters in range(50, 201, 25):
for n_trees in range(100,151,25):
for min_samples_split in [2, 10, 15, 20, 25, 30]:
#name = "Dectree_depth-3_AllLocations_log" # % (n_clusters)
#name = "ExtraTreesRegressor_%dtrees_split%d_notex_log" % (n_trees, min_samples_split)
name = "sgd_regressor_default_%d_notext_log" % (n_trees,)
print name
#kmeans = KMeans(
#random_state=3465343,
#n_clusters=n_clusters,
#n_jobs=-1,
#verbose=0)
#classifier = Pipeline(steps=[('knn', kmeans), ('tree', DecisionTreeRegressor())])
#classifier = DecisionTreeRegressor(max_depth=3, random_state=3465343)
#classifier = ExtraTreesRegressor(n_estimators=n_trees,
#verbose=2,
#n_jobs=-1,
#oob_score=False,
#min_samples_split=min_samples_split,
#random_state=3465343)
clf = SGDRegressor(random_state=3465343, verbose=1, n_iter=n_trees)
classifier = Pipeline(steps=[('scale', StandardScaler()), ('sgd', clf)])
classifier.fit(features, salaries)
#import StringIO
#with open("iris.dot", 'w') as f:
#f = export_graphviz(classifier, out_file=f)
predictions = classifier.predict(validation_features)
print np.exp(valid_salaries[1:10])
print np.exp(predictions[1:10])
mae = log_mean_absolute_error(valid_salaries, predictions)
print "MAE validation: ", mae
#importances = classifier.feature_importances_
#indices = np.argsort(importances)[::-1]
#num_feat = len(names)
## Print the feature ranking
#print "Feature ranking:"
#for f in xrange(len(indices)):
#print "%d. feature %d %s (%f)" % (f + 1, indices[f], names[indices[f]], importances[indices[f]])
## Plot the feature importances of the forest
#import pylab as pl
#pl.figure()
#pl.title("Feature importances")
#pl.bar(xrange(len(indices)), importances[indices],
#color="r", align="center")
#pl.xticks(xrange(len(indices)), indices)
#pl.xlim([-1, len(indices)])
#pl.show()
#a=5/0
save_model(classifier, name, mae)
#joblib.dump(predictions, path_join(prediction_dir, name + "_prediction_valid"))
#kmeans = KMeans(
#random_state=3465343,
#n_clusters=n_clusters,
#n_jobs=-1,
#verbose=0)
#classifier = Pipeline(steps=[('knn', kmeans), ('tree', DecisionTreeRegressor())])
#classifier = DecisionTreeRegressor(max_depth=3, random_state=3465343)
#classifier = ExtraTreesRegressor(n_estimators=n_trees,
#verbose=1,
#n_jobs=-1,
#oob_score=False,
#min_samples_split=min_samples_split,
#random_state=3465343)
clf = SGDRegressor(random_state=3465343, verbose=0, n_iter=n_trees)
classifier = Pipeline(steps=[('scale', StandardScaler()), ('sgd', clf)])
scores = cross_val_score(classifier, features, salaries, cv=5, score_func=log_mean_absolute_error, verbose=1)
print "Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
mae_cv = "%0.2f (+/- %0.2f)" % (scores.mean(), scores.std() / 2)
save_model(classifier, name, mae, mae_cv, parameters=",".join(names))
break
##break