-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimginterpret.py
35 lines (28 loc) · 939 Bytes
/
imginterpret.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import cv2
import numpy as np
# Load image
image = cv2.imread('contrail.jpg')
# Preprocessing
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
# Edge Detection
edges = cv2.Canny(blurred_image, 50, 150)
# Line Detection (Hough Transform)
lines = cv2.HoughLines(edges, 1, np.pi / 180, 150)
# Postprocessing and Display
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 1000 * (-b))
y1 = int(y0 + 1000 * (a))
x2 = int(x0 - 1000 * (-b))
y2 = int(y0 - 1000 * (a))
# Filter lines based on angle and length to find likely contrails
if 1.55 < np.abs(theta) < 1.58: # Close to horizontal lines
cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.imshow('Detected Contrails', image)
cv2.waitKey(0)
cv2.destroyAllWindows()