-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtools.py
217 lines (157 loc) · 6.27 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import cv2 as cv
import numpy as np
from musicalbeeps import Player
from scipy.signal import find_peaks
from scipy.signal import fftconvolve
from scipy.ndimage import interpolation
STAFF_LINE_COUNT = 5
# Applies Gaussian blur and Otsu's binarization method to the given grayscale image
def binarize(image):
blurred = cv.GaussianBlur(image, (5, 5), 0)
_, binarized = cv.threshold(blurred, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)
return binarized
# Corrects the skew in the given image by rotating it
def rotate(image, delta=2, limit=20):
def determine_score(arr, angle):
data = interpolation.rotate(arr, angle, reshape=False, order=0)
histogram = np.sum(data, axis=1)
score = np.sum((histogram[1:] - histogram[:-1]) ** 2)
return histogram, score
scores = []
angles = np.arange(-limit, limit + delta, delta)
for angle in angles:
histogram, score = determine_score(image, angle)
scores.append(score)
best_angle = angles[scores.index(max(scores))]
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
m = cv.getRotationMatrix2D(center, best_angle, 1.0)
rotated = cv.warpAffine(image, m, (w, h), flags=cv.INTER_CUBIC, borderMode=cv.BORDER_REPLICATE)
return rotated
# Detects rows of staff lines in the given image
def detect_lines(image):
inverse = cv.bitwise_not(image)
summed = np.sum(inverse, axis=1)
maximum = max(summed)
lines = find_peaks(summed, maximum / 2)[0]
line_groups = list()
for i in range(STAFF_LINE_COUNT, len(lines)+1, STAFF_LINE_COUNT):
line_groups.append(lines[i-STAFF_LINE_COUNT:i])
return line_groups
# Removes staff lines from the image
def remove_lines(image, rows):
length = len(image[0])
for row in rows:
for i in range(row-1, row+2):
image[i] = np.asarray([255] * length)
return image
# Normalized cross-correlation between a template image and an input image
def normxcorr2(template, image, mode="full"):
if np.ndim(template) > np.ndim(image) or \
len([i for i in range(np.ndim(template)) if template.shape[i] > image.shape[i]]) > 0:
print("normxcorr2: TEMPLATE larger than IMG. Arguments may be swapped.")
template = template - np.mean(template)
image = image - np.mean(image)
a1 = np.ones(template.shape)
ar = np.flipud(np.fliplr(template))
out = fftconvolve(image, ar.conj(), mode=mode)
image = fftconvolve(np.square(image), a1, mode=mode) - \
np.square(fftconvolve(image, a1, mode=mode)) / (np.prod(template.shape))
image[np.where(image < 0)] = 0
template = np.sum(np.square(template))
out = out / np.sqrt(image * template)
out[np.where(np.logical_not(np.isfinite(out)))] = 0
return out
# Scales the given array to 0-255 range
def scale(corr):
minimum = np.min(corr)
maximum = np.max(corr)
scalar = 255 / (maximum - minimum)
scaled = np.round((corr - minimum) * scalar).astype(int)
return scaled
def assign_groups(objects, lines):
line_centers = [sum(line_group) / len(line_group) for line_group in lines]
indexes = list(range(len(line_centers)))
groups = list()
for o in objects:
y_center = o[0][1]
group = min(indexes, key=lambda i: abs(line_centers[i] - y_center))
groups.append(group)
return groups
def is_quarter(note, group, beams):
x_center = note[0][0]
for beam in beams:
if beam[1] != group:
continue
x_min, x_max = beam[0]
if x_min < x_center < x_max:
return True
return False
# Reduces recognized musical objects to musical notes
def reduce_objects(objects, lines):
groups = assign_groups(objects, lines)
beams = list()
for i, o in enumerate(objects):
if o[1] != 'beam':
continue
x_min, x_max = o[0][0]
offset = (x_max - x_min) * 0.2
x_min = x_min - offset
x_max = x_max + offset
beam = (x_min, x_max), groups[i]
beams.append(beam)
notes = list()
for i, o in enumerate(objects):
group = groups[i]
if o[1] == 'notehead-empty':
note = (o[0][0], o[0][1], group, 2)
notes.append(note)
elif o[1] == 'notehead-full':
if is_quarter(o, group, beams):
note = (o[0][0], o[0][1], group, 0)
else:
note = (o[0][0], o[0][1], group, 1)
notes.append(note)
notes = sorted(notes, key=lambda x: (x[2], x[0]))
return notes, groups
def classify_note(y_center, group_lines, line_distance):
interval_big = line_distance * 0.5
interval_small = line_distance * 0.25
if y_center < group_lines[0] - interval_big:
return 12
elif y_center < group_lines[0] - interval_small:
return 11
elif y_center > group_lines[-1] + interval_big:
return 0
elif y_center > group_lines[-1] + interval_small:
return 1
for i in range(1, len(group_lines)):
current_line = group_lines[-i]
next_line = group_lines[-i-1]
if abs(current_line - y_center) < interval_small:
return 2*(i-1) + 2
elif next_line + interval_small < y_center < current_line - interval_small:
return 2*(i-1) + 3
if abs(next_line - y_center) < interval_small:
return 2 * (len(group_lines) - 1) + 2
# Classifies musical notes according to previously detected staff lines
def get_music(notes, lines):
line_distance = sum([lines[i][j+1] - lines[i][j] for i in range(len(lines))
for j in range(STAFF_LINE_COUNT - 1)]) / ((STAFF_LINE_COUNT - 1) * len(lines))
music = list()
for note in notes:
y_center, group, duration = note[1:]
group_lines = lines[group]
symbol = classify_note(y_center, group_lines, line_distance)
music.append((symbol, duration))
return music
# Produces the music output from the input
def play(music, save):
index_to_symbol = {0: 'C', 1: 'D', 2: 'E', 3: 'F', 4: 'G', 5: 'A', 6: 'B'}
duration_to_seconds = {0: 0.25, 1: 0.5, 2: 1}
player = Player(volume=0.3, mute_output=False)
for note, duration in music:
seconds = duration_to_seconds[duration]
letter = index_to_symbol[note % 7]
octave = str(4 + note // 7)
player.play_note(letter + octave, seconds)