-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathplot_forecasts.R
186 lines (142 loc) · 5.56 KB
/
plot_forecasts.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# This script allows to produce a plot for one-day-ahead probabilistic forecasts (with 50% and 95% prediction intervals).
rm(list = ls())
source("config_paths.R")
source("config_general.R")
source("config_splitting.R")
source("utils.R")
load(file.path(work.folder, "myinfo.Rdata"))
plot.permsamples <- FALSE
do.jasa <- TRUE
if(plot.permsamples){
do.agg <- T
algo.agg <- "DETS"
algo.bottom <- "KD-IC-NML"
alliseries <- c(1)
idays <- seq(1, 2, by = 1)
idays <- 1
algorithms <- c("INDEPBU", "PERMBU", "MINTshrink", "INDEPBU-MINTshrink", "PERMBU-MINTshrink", "BASE")
agg_methods <- c("BASE", "INDEPBU", "PERMBU", "PERMBU-MINTshrink", "INDEPBU-MINTshrink", "MINTdiag", "MINTshrink")
nbperjob <- 368
QF_agg <- array(NA, c(M, length(algorithms), 48*2))
allidtest <- seq(1, 48*2)
idjob <- 1
samples_job <- file.path(work.folder, "samples_agg", paste("samples_agg_", algo.agg, "_", algo.bottom, "_", idjob, ".Rdata", sep = ""))
load(samples_job)
list_samples_agg_nonull <- list_samples_agg[-which(sapply(list_samples_agg, is.null))]
BIGARRAY <- sapply(seq_along(list_samples_agg_nonull), function(i){list_samples_agg_nonull[[i]]}, simplify = 'array')
QF_agg[, , allidtest] <- BIGARRAY[, alliseries, match(algorithms, agg_methods), ]
mf_agg <- apply(QF_agg, c(2, 3), mean)
qf_agg <- apply(QF_agg, c(2, 3), quantile, prob = taus)
all_qf <- lapply(idays, function(iday){
qf_agg[, , (iday - 1) * 48 + seq(48) ]
})
all_mf <- lapply(idays, function(iday){
mf_agg[, (iday - 1) * 48 + seq(48) ]
})
}else{
do.agg <- F
alliseries <- seq(200) #c(1267)
algorithms <- c("KD-IC-NML")
idays <- seq(1, 92, by = 1)
idays <- 1
if(do.jasa){
series_isagg <- c(TRUE, FALSE) # actual
alliseries <- c(1, 34) # actual
idays <- c(11) # bettter coverage
}
}
only.future <- FALSE
if(do.jasa){
tag <- "example"
savepdf(file.path(results.folder, paste("PLOT_forecasts_", tag, sep = "")), height = 27 * 0.25, width = 21)
par(mfrow = c(1, 2))
}else{
tag <- "allmethods"
savepdf(file.path(results.folder, paste("PLOT_forecasts_", tag, sep = "") ))
}
for(iseries in alliseries){
if(do.jasa){
do.agg <- series_isagg[which(iseries == alliseries)]
if(do.agg){
algorithms <- "DETS"
}else{
algorithms <- "KD-IC-NML"
}
}
print(iseries)
if(do.agg){
idseries <- aggSeries[iseries]
load(file.path(aggseries.folder, paste("series-", idseries, ".Rdata", sep = "")))
}else{
idseries <- bottomSeries[iseries]
load(file.path(mymeters.folder, paste("mymeter-", idseries, ".Rdata", sep = "")))
}
if(!do.jasa){
#par(mfrow = c(2, 2))
par(mfrow = c(2, 3))
}
list_load <- vector("list", length(algorithms))
for(ialgo in seq_along(algorithms)){
algo <- algorithms[ialgo]
algo_load <- algo
if(plot.permsamples){
qf <- lapply(idays, function(iday){
all_qf[[iday]][, ialgo, ]
})
mf <- lapply(idays, function(iday){
all_mf[[iday]][ialgo, ]
})
list_load[[ialgo]] <- list(all_qf = qf, all_mf = mf)
}else{
res_file <- file.path(basef.folder, algo, paste("results_", idseries, "_", algo, ".Rdata", sep = ""))
load(res_file)
if(algo_load == "KD-IC-NML"){
list_load[[ialgo]] <- list(all_qf = all_qf, all_mf = all_mf) #res_testing
}else if(algo_load == "TBATS" || algo_load == "DYNREG" || algo_load == "DETS"){
list_load[[ialgo]] <- list(all_qf = all_qf, all_mf = all_mf)
#list_load[[ialgo]] <- list(all_qf = all_qf, all_mf = all_mf, all_mfsample = all_mfsample)
}else if(algo_load == "Uncond"){
list_load[[ialgo]] <- list(qFtest = qFtest, mFtest = mFtest)
}
}
}#algo
for(iday in idays){
day_min <- Inf
day_max <- -Inf
for(ialgo in seq_along(algorithms)){
day_min <- pmin(day_min, min(list_load[[ialgo]]$all_qf[[iday]]))
day_max <- pmax(day_max, max(list_load[[ialgo]]$all_qf[[iday]]))
}
print(iday)
for(ialgo in seq_along(algorithms)){
algo <- algorithms[ialgo]
algo_load <- algo
if(algo_load == "KD-IC-NML" || algo_load == "TBATS" || algo_load == "DYNREG" || algo_load == "DETS" || plot.permsamples){
all_qf <- list_load[[ialgo]]$all_qf
all_mf <- list_load[[ialgo]]$all_mf
mu_hat <- matrix(unlist(all_mf), ncol = 48, byrow = T)
qf_allhours <- all_qf[[iday]]
}else if(algo_load == "Uncond"){
qFtest <- list_load[[ialgo]]$qFtest
mFtest <- list_load[[ialgo]]$mFtest
qf_allhours <- qFtest
mu_hat <- matrix(mFtest, ncol = 48, byrow = T)
}
rownames(qf_allhours) <- paste(taus*100, "%", sep = "")
future <- demand[test$id[(iday - 1) * 48 + seq(1, 48)]]
subtaus <- c("5%", "25%", "75%", "95%")
#subtaus <- c("1%", "25%", "75%", "99%")
mymain <- ifelse(algo == "KD-IC-NML", "Individual smart meter", ifelse(algo == "DETS", "Top aggregated series", algo))
#myYLIM <- c(0, max(c(future, qf_allhours[subtaus, ]), na.rm = T))
myYLIM <- c(day_min, day_max)
plotQF(qf_allhours, future, subtaus, id = seq(48), only.future = only.future,
main = mymain, xlab = "Time of day", ylab = "Consumption (kWh)", xaxt='n', cex.lab = 1.2, ylim = myYLIM)
#axis(1, labels = tday, at = seq(1, 48))
itday <- c(1, seq(8, 48, by = 8))
axis(1, labels = tday[itday], at = itday, cex.axis=0.9)
lines(mu_hat[iday, ], col = "red")
}# ALGO
}# DAY
#dev.off()
} # iseries
dev.off()