-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpermutations.R
68 lines (56 loc) · 2.71 KB
/
permutations.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# This script computes the permutations to apply to the samples from the marginals
# in order to restore the dependences among the variables.
rm(list = ls())
source("config_paths.R")
source("config_general.R")
source("config_splitting.R")
source("utils.R")
#library(parallel)
library(igraph)
load(file.path(work.folder, "myinfo.Rdata"))
# compute the parsing order of the aggregate nodes
leaves <- V(itree)[degree(itree, mode="out") == 0]
agg_nodes <- V(itree)[degree(itree, mode="out") != 0]
list_matpermutations <- list_vecties <- vector("list", length(agg_nodes))
for(inode in seq_along(agg_nodes)){
agg_node <- agg_nodes[inode]
idseries_agg <- names(agg_node)
children_nodes <- ego(itree, order = 1, nodes = agg_node, mode = "out")[[1]][-1]
print(children_nodes)
mat_residuals <- sapply(seq_along(children_nodes), function(inode){
child_node <- children_nodes[inode]
isbottom <- (child_node %in% leaves)
idseries <- names(child_node)
if(isbottom){
resid_file <- file.path(insample.folder, algo.bottom, paste("residuals_", idseries, "_", algo.bottom, ".Rdata", sep = ""))
load(resid_file)
e_residuals <- c(rep(NA, n_past_obs_kd), e_residuals)
}else{
resid_file <- file.path(insample.folder, algo.agg, paste("residuals_", idseries, "_", algo.agg, "_", 1, ".Rdata", sep = ""))
load(resid_file)
#e_residuals
}
e_residuals
})
# remove the first few rows (not available for KD)
mat_residuals <- tail(mat_residuals, -n_past_obs_kd)
#hour_alli <- getInfo(tail(learn$id, -n_past_obs_kd))$hour
id_all <- tail(learn$id, -n_past_obs_kd)
# compute ranks by time of day
n_resid <- nrow(mat_residuals)
stopifnot(n_resid %% 48 == 0)
vec_ties <- sapply(seq(ncol(mat_residuals)), function(j){
(nrow(mat_residuals) - length(unique(mat_residuals[, j]))) / nrow(mat_residuals)
}) * 100
mat_residuals <- tail(mat_residuals, M) # 5760 instead of 15168
mat_permutations <- apply(mat_residuals, 2, rank, ties.method = "random")
colnames(mat_permutations) <- names(children_nodes)
list_matpermutations[[inode]] <- mat_permutations
list_vecties[[inode]] <- vec_ties
#perm_file <- file.path(permutations.folder, paste("perm_", algo.agg, "_", algo.bottom, "_", idseries_agg, ".Rdata", sep = ""))
#save(file = perm_file, list = c("mat_permutations", "vec_ties"))
}
list_matpermutations <- setNames(list_matpermutations, names(agg_nodes))
list_vecties <- setNames(list_vecties, names(agg_nodes))
perm_file <- file.path(permutations.folder, paste("perm_", algo.agg, "_", algo.bottom, ".Rdata", sep = ""))
save(file = perm_file, list = c("list_matpermutations", "list_vecties"))