-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.R
312 lines (246 loc) · 10.5 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# This is the main script which computes the base forecasts as well as all the revised forecasts from the other methods.
# The arguments are:
# experiment: the experiment you want to perform ("small", "newlarge")
# marg: the distribution of the errors ("norm", "t")
# T_learn: the size of the learning set (training + validation)
# M: the number of observations per samples (when sampling from the predictive distributions)
# idjob: the job id (useful when using distributed computing, see runsim.sh)
# nb_simulations: the nnumber of simulations to perform
# nbcores: the number of cores used by the job
# use.trueparam: do you want to use the true AR parameters? (TRUE, FALSE)
rm(list = ls())
assign("last.warning", NULL, envir = baseenv())
args = (commandArgs(TRUE))
if(length(args) == 0){
experiment <- "newlarge"
marg <- "norm"
T_learn <- 500
M <- 500
idjob <- 1986
nb_simulations <- 1000
nbcores <- 1
use.trueparam <- TRUE
}else{
for(i in 1:length(args)){
print(args[[i]])
}
experiment <- args[[1]]
marg <- args[[2]]
T_learn <- as.integer(args[[3]])
M <- as.integer(args[[4]])
use.trueparam <- as.logical(args[[5]])
idjob <- as.integer(args[[6]])
nb_simulations <- as.integer(args[[7]])
nbcores <- as.integer(args[[8]])
}
set.seed(idjob)
graphics.off()
source("config_paths.R")
source("packages.R")
source("bights.R")
source("simulate.R")
source("utils.R")
source("mint.R")
source("code.R")
source("permutations.R")
source("aggregation.R")
source("nicefigs.R")
tag <- "jasa"
do.recovery <- TRUE
fixed.dgp <- FALSE
do.bootstrap.residuals <- TRUE
do.correction <- FALSE
print(fixed.dgp)
print(use.trueparam)
print(do.bootstrap.residuals)
print(do.correction)
if(use.trueparam){
print("True parameters are used at the bottom and the top levels !")
}
print(experiment)
print(marg)
print(M)
q_probs <- runif(M)
n_true_paths <- M
n_forecast_paths <- M
H <- 2
mc.cores.basef <- nbcores
refit_step <- 40
T_test <- ifelse(do.recovery, H, 500)
T_all <- T_learn + T_test
n_warm <- 500
n_simul <- T_all
print(T_learn)
obj.path <- NULL
if(do.recovery){
obj.path <- list(npaths = n_true_paths)
}
config_forecast_bot <- list(fit_fct = auto.arima, refit_fct = Arima,
param_fit_fct = list(seasonal = FALSE, stationary = TRUE, approximation = FALSE, ic = "bic"), # max.p = 2, max.q = 2,
param_refit_fct = list(use.initial.values = TRUE),
param_forecast = list( bootstrap = do.bootstrap.residuals, npaths = n_forecast_paths ))
config_forecast_agg <- list(fit_fct = auto.arima, refit_fct = Arima,
param_fit_fct = list(seasonal = FALSE, stationary = TRUE, approximation = FALSE, ic = "bic"),
param_refit_fct = list(use.initial.values = TRUE),
param_forecast = list( bootstrap = do.bootstrap.residuals, npaths = n_forecast_paths ))
list_simulations <- vector("list", nb_simulations)
for(i in seq_along(list_simulations)){
print(paste(i, " - Start ALL -", base::date(), sep = ""))
if(experiment == "newlarge"){
obj_simul <- list()
obj_simul$param <- NULL
obj_simul$param$ar_param <- obj_simul$param$ma_param <- NULL
ngroups <- 25
list_params <- vector("list", ngroups)
res <- NULL
for(igroup in seq(ngroups)){
NM <- cbind(paste("T", igroup, sep = "") ,
c( paste("A", igroup, sep = "") , paste("B", igroup, sep = "") ,
paste("C", igroup, sep = "") , paste("D", igroup, sep = "") ))
res <- rbind(res, NM)
}
res <- cbind("T", res)
tags <- cbind(res[, 1], sapply(seq(2, ncol(res)), function(j)(
apply(res[, seq(j)], 1, paste, collapse = "")
)))
myinfo <- makeINFO2(tags)
A <- myinfo$A
bts <- matrix(NA, nrow = n_simul, ncol = ngroups * 4)
sample_paths_bottom <- array(NA, c(H, ngroups * 4, obj.path$npaths))
for(igroup in seq(ngroups)){
res_sim <- simulate_small_hts(n_simul, marg, obj.path)
obj_simul$param$ar_param <- c(obj_simul$param$ar_param, res_sim$param$ar_param)
obj_simul$param$ma_param <- c(obj_simul$param$ma_param, res_sim$param$ma_param)
id <- seq((igroup - 1) * 4 + 1, (igroup - 1) * 4 + 4 )
bts[, id] <- res_sim$bts
sample_paths_bottom[, id, ] <- res_sim$sample_paths
}
}else if(experiment == "small"){
obj_simul <- simulate_small_hts(n_simul, marg, obj.path)
bts <- obj_simul$bts
NM <- cbind(rep("T", 4), rep(c("A", "B"), each = 2), rep(c("A", "B"), 2))
tags <- cbind(NM[, 1], sapply(seq(2, ncol(NM)), function(j)(
apply(NM[, seq(j)], 1, paste, collapse = "")
)))
myinfo <- makeINFO(tags)
A <- myinfo$A
sample_paths_bottom <- obj_simul$sample_paths
}
###########
my_bights <- bights(bts, A)
my_bights$itree <- myinfo$itree
my_bights$bnames <- myinfo$bottomSeries
my_bights$anames <- myinfo$aggSeries
my_bights$allnames <- c(myinfo$aggSeries, myinfo$bottomSeries)
sample_paths <- sapply(seq(H), function(h){
as.matrix(my_bights$S %*% sample_paths_bottom[h, , ])
}, simplify = 'array')
print(paste("Data simulated: ", " ", base::date()))
P_BU <- pbu(my_bights)
infofile <- file.path(rdata.folder, paste("info_", experiment, ".Rdata", sep = ""))
save(file = infofile, list = c("my_bights"))
list_subsets_test <- lapply(seq(T_learn, T_all - H), function(i){c(i - T_learn + 1, i)})
results <- makebf(my_bights, list_subsets_test, H = H,
config_forecast_agg = config_forecast_agg, config_forecast_bot = config_forecast_bot,
refit_step = refit_step, mc.cores = mc.cores.basef)
e_hat <- results$allresiduals
row.names(e_hat) <- my_bights$allnames
e_hat <- e_hat[, sample(seq(ncol(e_hat)), M)]
mint_methods <- list(mintdiagonal = "diagonal", mintshrink = "shrink")
list_MINT <- lapply(mint_methods, function(wmethod){
compute_pmint(my_bights, method = wmethod, residuals = e_hat)
})
# MINT
res_allmint <- lapply(list_MINT, function(mylist){
res_obj <- mylist
means_mint <- sapply(seq(H), function(h){
as.matrix(my_bights$S %*% res_obj$P_MINT %*% results$allmf[, , h])
}, simplify = "array")
variances_mint <- diag(res_obj$V)
list(means_mint = means_mint, variances_mint = variances_mint)
})
e_tilde <- my_bights$S %*% list_MINT$mintshrink$P_MINT %*% e_hat
# Make permutations
obj_permutations_ehat <- make_permutations(my_bights, t(e_hat))
obj_permutations_etilde <- make_permutations(my_bights, t(e_tilde))
n_test <- length(list_subsets_test)
test_depbu_samples <- test_base_samples <- test_mint_samples <- test_indepbu_samples <- vector("list", n_test)
test_results <- vector("list", n_test)
for(itest in seq(n_test)){
if(itest %% 100 == 0)
print(itest)
samples_almint <- lapply(res_allmint, function(res_mint){
mint_samples <- sapply(seq(my_bights$nts), function(j){
sapply(seq(H), function(h){
m <- res_mint$means_mint[j, itest, h]
v <- res_mint$variances_mint[j]
qnorm(q_probs, m, sqrt(v))
})
}, simplify = "array")
mint_samples <- aperm(mint_samples, c(1, 3, 2))
})
test_results[[itest]] <- c(test_results[[itest]], samples_almint)
# sample from all basef
base_samples <- sapply(seq(my_bights$nts), function(i){
sapply(seq(H), function(h){
qf <- results$allqf[[i]][[itest]][, h]
sample(qf)
})
}, simplify = "array")
base_samples <- aperm(base_samples, c(1, 3, 2))
test_results[[itest]]$base <- base_samples
# DEP-BU AND INDEP-BU
depbu_samples <- indepbu_samples <- depbumint_samples <- array(NA, dim(base_samples))
for(h in seq(H)){
samples_h <- base_samples[, , h]
# DEP-BU
permuted_samples_bottom <- permutate_samples(my_bights, samples_h, obj_permutations_ehat$list_matpermutations) # ATTENTION ICI
tpermuted_samples_bottom <- t(permuted_samples_bottom)
depbu_samples[, , h] <- as.matrix(t(my_bights$S %*% tpermuted_samples_bottom))
if(do.correction){
permuted_samples_bottom <- permutate_samples(my_bights, samples_h, obj_permutations_etilde$list_matpermutations)
tpermuted_samples_bottom <- t(permuted_samples_bottom)
}
# DEP-BU + MINT
btilde <- P_BU %*% res_allmint[["mintshrink"]]$means_mint[, itest, h]
meanrevised_samples_bottom <- tpermuted_samples_bottom - apply(permuted_samples_bottom, 2, mean) + btilde
if(do.correction){
meanrevised_samples_bottom <- (meanrevised_samples_bottom/apply(permuted_samples_bottom, 2, sd) ) * sqrt(P_BU %*% res_allmint[["mintshrink"]]$variances_mint)
}
depbumint_samples[, , h] <- as.matrix(t(my_bights$S %*% meanrevised_samples_bottom))
# INDEP-BU
indepbu_samples[, , h] <- as.matrix(t(my_bights$S %*% P_BU %*% t(samples_h)))
}
test_results[[itest]]$depbu <- depbu_samples
test_results[[itest]]$depbumint <- depbumint_samples
test_results[[itest]]$indepbu <- indepbu_samples
}# test
if(do.recovery){
list_simulations[[i]] <- list(samples_pred = test_results[[1]], samples_true = sample_paths)
}else{
err_test <- lapply(seq(H), function(h){
lapply(seq(n_test), function(itest){ # itest
lapply(test_results[[itest]], function(mat_method){ # imethod
obs <- results$allfuture[, itest, h]
X <- mat_method[, , h]
crps <- compute_crps(X, obs)
squared_erors <- (apply(X, 2, mean) - obs)^2
qs <- compute_qscores(X, obs)
qs_tails <- apply(qs, 2, function(x){ mean(x * weights_tails) })
qs_uniform <- apply(qs, 2, function(x){ mean(x * weights_uniform) })
qs_rtail <- apply(qs, 2, function(x){ mean(x * weights_rtail) })
qs_ltail <- apply(qs, 2, function(x){ mean(x * weights_ltail) })
# DO NOT SAVE qs (too big)
list(crps = crps, squared_erors = squared_erors, qs_tails = qs_tails, qs_rtail = qs_rtail, qs_ltail = qs_ltail, qs_uniform = qs_uniform)
})
})
})
list_simulations[[i]] <- err_test
}
if(i%%5 == 0){
filetosave <- nameResfile(experiment, marg, T_learn, M, use.trueparam, idjob, tag)
save(file = filetosave, list = c("list_simulations"))
}
}
filetosave <- nameResfile(experiment, marg, T_learn, M, use.trueparam, idjob, tag)
save(file = filetosave, list = c("list_simulations"))