-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathanalysis.R
173 lines (138 loc) · 4.71 KB
/
analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# This script produces the figures with all the accuracy measures.
rm(list = ls())
source("config_paths.R")
source("utils.R")
source("nicefigs.R")
source("analysis_utils.R")
library(igraph)
library(kSamples)
library(car)
graphics.off()
probs <- seq(1, 99)/100
# task can be: "pvalue" "mse" "wasserstein"
task <- "wasserstein"
# experiment can be: "small" "newlarge"
experiment <- "newlarge"
# T_learn <- 10000
# M <- 1000
T_learn <- 500
M <- 500
marg <- "norm"
#marg <- "t"
use.trueparam <- FALSE #TRUE
tag <- "jasa"
set_jobs <- seq(1, 12)
h <- 1
all_simulations <- NULL
for(idjob in set_jobs){
print(idjob)
filetoload <- nameResfile(experiment, marg, T_learn, M, use.trueparam, idjob, tag)
load(filetoload)
all_simulations <- c(all_simulations, list_simulations)
}
idnull <- which(sapply(all_simulations, is.null))
if(length(idnull) > 0){
all_simulations <- all_simulations[-which(sapply(all_simulations, is.null))]
}
nb_simulations <- length(all_simulations)
print(nb_simulations)
load(file.path(rdata.folder, paste("info_", experiment, ".Rdata", sep = "")))
nts <- my_bights$nts
naggts <- my_bights$naggts
node_names <- names(V(my_bights$itree))
for(i in seq_along(all_simulations)){
x_mintshrink <- all_simulations[[i]]$samples_pred$mintshrink
x_indepbu <- all_simulations[[i]]$samples_pred$indepbu
x_indepbumintshrink <- x_indepbu
mean_mintshrink <- apply(x_mintshrink, c(2, 3), mean)
mean_indepbu <- apply(x_indepbu, c(2, 3), mean)
nvar <- dim(x_indepbumintshrink)[1]
for(k in seq(nvar)){
x_indepbumintshrink[k, , ] <- x_indepbu[k, , ] - mean_indepbu + mean_mintshrink
}
all_simulations[[i]]$samples_pred$indepbumintshrink <- x_indepbumintshrink
}
mycols <- c("red", "green" , "grey", "blue", "purple", "yellow", "orange")
# "mintdiagonal" "mintshrink" "base" "depbu" "depbumint" "indepbu" "indepbumintshrink"
name_methods <- c(names(all_simulations[[1]]$samples_pred), "true")
id1 <- id2 <- seq(M)
id_print <- c(1, 2, 30)
#id_print <- c(1, 2, 30, 40, 50, 60)
mat_test <- sapply(id_print, function(j){
if(j%%10 == 0)
print(j)
sapply(seq(nb_simulations), function(i){
samples_pred <- all_simulations[[i]]$samples_pred
samples_true <- all_simulations[[i]]$samples_true
samples_true <- aperm(samples_true, c(2, 1, 3))
samples_method <- sapply(samples_pred, function(mat){
mat[, j, h]
})
x2 <- samples_true[, j, h]
if(task == "mse"){
mu <- mean(x2)
RET <- sapply(colnames(samples_method), function(mycol){
x1 <- samples_method[, mycol]
(mean(x1) - mu)^2
})
}else if(task == "pvalue"){
RET <- sapply(colnames(samples_method), function(mycol){
x1 <- samples_method[, mycol]
ks.test(x1[id1], x2[id2])$p.value
})
}else if(task == "wasserstein"){
true_quantiles <- quantile(x2, probs)
RET <- sapply(colnames(samples_method), function(mycol){
x1 <- samples_method[, mycol]
log(mean( (quantile(x1, probs) - true_quantiles)^2))
})
}
RET
})
}, simplify = "array")
mat_test <- aperm(mat_test, c(2, 1, 3))
print(dimnames(mat_test))
######### BOXPLOTS (pvalues, mse, wasserstein)
myfile <- namePdffile(experiment, marg, T_learn, M, use.trueparam,
paste(tag, "-", task,sep = "") )
if(T_learn == 500){
savepdf(myfile, width = 21 * 0.9, height = 29.7 * 0.25)
par(mfrow = c(1, 3), mar=c(5.05,3,2,2))
}else{
savepdf(myfile, width = 21 * 0.9, height = 29.7 * 0.20)
par(mfrow = c(1, 3), mar=c(1,3,2,2))
}
for(j in seq(dim(mat_test)[3])){
mymat <- mat_test[, , j]
if(T_learn == 500){
colnames(mymat) <- sapply(colnames(mymat), bettername)
myxaxt <- NULL
}else{
myxaxt <- 'n'
}
if(task != "mse"){
if(j == 1){
mymain <- "Level 1 (top level)"
}else if(j == 3){
mymain <- "Level 3 (bottom level)"
}else{
mymain <- "Level 2"
#paste("Level ", j, ifelse(j == 3, "(bottom level)", "") )
}
if(task == "pvalue"){
boxplot(mymat, las=2, ylab = "p-value", main = mymain,
col = mycols, yaxt = 'n', xaxt = myxaxt, cex.axis = 1, outline = FALSE)
axis(2, at = c(0, 0.25, 0.5, 0.75, 1), cex.axis = 1.2)
abline(h = c(0, 0.25, 0.5, 0.75, 1), lwd = 0.1)
}else{
boxplot(mymat, las=2, ylab = "2-Wasserstein distance (log scale)",
main = mymain, col = mycols, xaxt = myxaxt, cex.axis = 1, outline = FALSE)
}
}else{
boxplot(mymat, las=2, ylab = "MSE",
main = paste("Leval ", j, ifelse(j == 3, "(bottom level)", "") ),
col = mycols, cex.axis = 1.2,
outline = FALSE)
}
}
dev.off()