-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsetup.py
190 lines (177 loc) · 7.77 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
For quick push do:
```bash
# change library version
cd ~/ultimate-utils/
rm -rf build
rm -rf dist
cd ~/ultimate-utils/
python setup.py sdist bdist_wheel
twine check dist/*
twine upload dist/*
cd ~/ultimate-utils/
rm -rf build
rm -rf dist
```
refs:
- The document explains setuptools package discovery for correct python package creation: https://setuptools.pypa.io/en/latest/userguide/package_discovery.html#using-find-or-find-packages
- note: setuptools: is a Python library designed to facilitate the packaging, distribution, and installation of Python projects
"""
from setuptools import setup
from setuptools import find_packages
import os
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
print('WARNING: YOU HAVE TO INSTALL PYTORCH ON YOUR OWN (WITH CUDA IF YOU NEED A GPU)')
setup(
name='ultimate-utils', # project name
version='0.8.0',
description="Brando's Ultimate Utils for Science, Machine Learning, and AI",
long_description=long_description,
long_description_content_type="text/markdown",
url='https://github.com/brando90/ultimate-utils',
author='Brando Miranda',
author_email='[email protected]',
python_requires='>=3.10.0',
license='Apache-2.0',
# ref: https://chat.openai.com/c/d0edae00-0eb2-4837-b492-df1d595b6cab
# The `package_dir` parameter is a dictionary that maps package names to directories.
# A key of an empty string represents the root package, and its corresponding value
# is the directory containing the root package. Here, the root package is set to the
# 'src' directory.
#
# The use of an empty string `''` as a key is significant. In the context of setuptools,
# an empty string `''` denotes the root package of the project. It means that the
# packages and modules located in the specified directory ('src' in this case) are
# considered to be in the root of the package hierarchy. This is crucial for correctly
# resolving package and module imports when the project is installed.
#
# By specifying `{'': 'src'}`, we are informing setuptools that the 'src' directory is
# the location of the root package, and it should look in this directory to find the
# Python packages and modules to be included in the distribution.
package_dir={'': 'py_src'},
# The `packages` parameter lists all Python packages that should be included in the
# distribution. A Python package is a way of organizing related Python modules into a
# directory hierarchy. Any directory containing an __init__.py file is considered a
# Python package.
#
# `find_packages('src')` is a convenience function provided by setuptools, which
# automatically discovers and lists all packages in the specified 'src' directory.
# This means it will include all directories in 'src' that contain an __init__.py file,
# treating them as Python packages to be included in the distribution.
#
# By using `find_packages('src')`, we ensure that all valid Python packages inside the
# 'src' directory, regardless of their depth in the directory hierarchy, are included
# in the distribution, eliminating the need to manually list them. This is particularly
# useful for projects with a large number of packages and subpackages, as it reduces
# the risk of omitting packages from the distribution.
packages=find_packages('py_src'),
# When using `pip install -e .`, the package is installed in 'editable' or 'develop' mode.
# This means that changes to the source files immediately affect the installed package
# without requiring a reinstall. This is extremely useful during development as it allows
# for testing and iteration without the constant need for reinstallation.
#
# In 'editable' mode, the correct resolution of package and module locations is crucial.
# The `package_dir` and `packages` configurations play a vital role in this. If the
# `package_dir` is incorrectly set, or if a package is omitted from the `packages` list,
# it can lead to ImportError due to Python not being able to locate the packages and
# modules correctly.
#
# Therefore, when using `pip install -e .`, it is essential to ensure that `package_dir`
# correctly maps to the root of the package hierarchy and that `packages` includes all
# the necessary packages by using `find_packages`, especially when the project has a
# complex structure with nested packages. This ensures that the Python interpreter can
# correctly resolve imports and locate the source files, allowing for a smooth and
# efficient development workflow.
# for pytorch see doc string at the top of file
install_requires=[
'fire',
'dill',
# 'networkx>=2.5',
'scipy',
'scikit-learn',
'lark-parser',
'tensorboard',
'pandas',
'progressbar2',
'requests',
'aiohttp',
'numpy',
'plotly',
'wandb',
'matplotlib',
'nvidia-htop',
'openai',
'anthropic',
'jsonlines',
# 'statsmodels'
# 'statsmodels==0.12.2'
# 'statsmodels==0.13.5'
# - later check why we are not installing it...
'seaborn',
# 'nltk'
'twine',
'dspy-ai',
'ragatouille',
'torch', # here so it's there for default but if using vllm see bellow or readme.md
# 'torchvision',
# 'torchaudio',
'trl',
'transformers',
'peft',
'accelerate',
'datasets',
'bitsandbytes',
'evaluate',
'einops',
'sentencepiece', # needed llama2 tokenizer
# 'zstandard', # needed for eval of all the pile
# def does not work for mac
# # -- ref: https://github.com/vllm-project/vllm/issues/2747
# pip install torch==2.2.1
# pip install vllm==0.4.1
# 'torch==2.2.1',
# 'vllm==0.4.1',
# 'torch==2.4.0',
# 'vllm==0.5.5',
# # --
# # mercury: https://github.com/vllm-project/vllm/issues/2747
# 'dspy-ai',
# # 'torch==2.1.2+cu118', # 2.2 net supported due to vllm see: https://github.com/vllm-project/vllm/issues/2747
# 'torch==2.2.2', # 2.2 net supported due to vllm see: https://github.com/vllm-project/vllm/issues/2747
# # 'torchvision',
# # 'torchaudio',
# # 'trl',
# 'transformers',
# 'accelerate',
# # 'peft',
# # 'datasets==2.18.0',
# 'datasets',
# 'evaluate',
# 'bitsandbytes',
# # 'einops',
# # 'vllm==0.4.0.post1', # my gold-ai-olympiad project uses 0.4.0.post1 ref: https://github.com/vllm-project/vllm/issues/2747
# # ampere
# 'dspy-ai',
# # 'torch==2.1.2+cu118', # 2.2 not supported due to vllm see: https://github.com/vllm-project/vllm/issues/2747
# # 'torch==2.1.2', # 2.2 not supported due to vllm see: https://github.com/vllm-project/vllm/issues/2747
# # 'torch==2.2.1', # 2.2 not supported due to vllm see: https://github.com/vllm-project/vllm/issues/2747
# 'torch==2.2.1', # 2.2 not supported due to vllm see: https://github.com/vllm-project/vllm/issues/2747
# # 'torchvision',
# # 'torchaudio',
# # 'trl',
# # 'transformers==4.39.2',
# 'transformers>=4.40',
# 'accelerate==0.29.2',
# # 'peft',
# # 'datasets==2.18.0',
# 'datasets==2.14.7',
# 'evaluate==0.4.1',
# 'bitsandbytes== 0.43.0',
# 'einops',
# 'flash-attn>=2.5.8',
# 'vllm==0.4.1', # my gold-ai-olympiad project uses 0.4.0.post1 ref: https://github.com/vllm-project/vllm/issues/2747
# # pip install -q -U google-generativeai
]
)