-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_watermarks_variable.py
257 lines (190 loc) · 9.31 KB
/
generate_watermarks_variable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import pickle
from os import listdir
from os.path import isfile, join
from pathlib import Path
import sys
import random
def rgb2gray(rgb):
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def gray2rgb(gray):
rgb = np.stack((gray,)*3, axis=-1)
return rgb
def rescale_values(image,max_val=1,min_val=0):
'''
image - numpy array
max_val/min_val - float
'''
return (image-image.min())/(image.max()-image.min())*(max_val-min_val)+min_val
def preprocess_watermark(watermark_path, image_shape=(128,128)):
watermark = Image.open(watermark_path)
#resize watermark to cover the entire background width without getting deformed
w=int(image_shape[0])
h=int(watermark.size[1]*image_shape[0]/watermark.size[0])
watermark = np.array(watermark.resize((w,h)))
#turning watermark into grayscale
rgb=rescale_values(watermark,1,0)
r, g, blue = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 1-(0.2989 * r + 0.5870 * g + 0.1140 * blue)
# trim excess rows and cols
non_trimmed_row_indices =[i for i in range(gray.shape[0]) if not np.allclose(gray[i,:],1)]
watermark_trimmed = gray[non_trimmed_row_indices,:]
non_trimmed_col_indices =[i for i in range(watermark_trimmed.shape[1]) if not np.allclose(watermark_trimmed[:,i],1)]
watermark_trimmed = watermark_trimmed[:,non_trimmed_col_indices]
return watermark_trimmed
def get_watermark_position(watermark_shape, image_shape=(128,128)):
rand_y = np.random.randint(0, high= (image_shape[0])-watermark_shape[0])
rand_x = np.random.randint(0, high= (image_shape[1])-watermark_shape[1])
return rand_y, rand_x
SEED=0
np.random.seed(SEED)
import os
os.environ['PYTHONHASHSEED']=str(SEED)
import random
random.seed(SEED)
from glob import glob
# random.sample(cat_names,k=6000)
cat_paths = glob('./images/cat/*')
dog_paths = glob('./images/dog/*')
print('total dogs and cats:', len(dog_paths), len(cat_paths))
folder=''
watermark_path_jpeg=folder+'watermark banner.jpg'
image_size=(128,128)
intensity=0.8 # opacity
def add_watermark_variable(background_image_path,watermark_path, intensity_watermark,image_size,white_bool=1, max_val=1, min_val=0):
#watermark should be jpg with white background
#lower intensity_watermark leads to a more transparent watermark in the final image (less contrast)
# white_bool is a bool that indicated if the watermark to add is white or black
background_image = Image.open(background_image_path)
background_image = background_image.resize(image_size)
background_image=np.array(background_image)
b=rescale_values(background_image,max_val,min_val)
wm_preprocessed = preprocess_watermark(watermark_path)
wm_shape = wm_preprocessed.shape
pos = get_watermark_position(wm_shape)
#padding watermark to be an image the same size as the background image
white=np.ones((b.shape[0],b.shape[1]))
white[pos[0]:pos[0]+wm_shape[0], pos[1]:pos[1]+wm_shape[1]] = wm_preprocessed
# grayscale watermark with 3 channels
gr=np.repeat(white[..., np.newaxis], 3, axis=2)
if white_bool:
im=1-b
gr_p=rescale_values(gr,1,1-intensity_watermark)
i_2=im*gr_p
output_image=1-(i_2)
else:
im=rescale_values(b,max_val,min_val)
gr_p=rescale_values(gr,1,1-intensity_watermark)
output_image=im*gr_p
#output_image=0
return output_image, 1.0*(white<1)
def save_images(wm_prev_cat, wm_prev_dog,cat_files,dog_files,watermark_path,image_size,intensity_watermark,output_path,white_bool=1, max_val=1, min_val=0):
with_watermark_cat=np.random.choice(cat_files,size=int(len(cat_files)*wm_prev_cat), replace=False)
with_watermark_dog=np.random.choice(dog_files,size=int(len(dog_files)*wm_prev_dog), replace=False)
print(f'creating dataset {output_path}')
print("prevs", wm_prev_cat, wm_prev_dog)
print('num cat', len(cat_files))
print('num dog', len(dog_files))
print('wm cat:', int(len(cat_files)*wm_prev_cat), len(with_watermark_cat))
print('wm dog:', int(len(dog_files)*wm_prev_dog), len(with_watermark_dog))
# Path(output_path).mkdir(parents=True, exist_ok=True)
n_water=0
n_no_water=0
data = np.zeros((len(cat_files) + len(dog_files), 128, 128, 3))
masks = np.zeros((len(cat_files) + len(dog_files), 128, 128))
labels = np.zeros((len(cat_files) + len(dog_files), 1))
labels[len(cat_files):] = 1
watermark_inds = []
data_ind = 0
for i, image in enumerate(cat_files):
if image in with_watermark_cat:
out_im, mask=add_watermark_variable(image,watermark_path,intensity_watermark,image_size,white_bool, max_val, min_val)
n_water+=1
watermark_inds.append(data_ind)
else:
out_im = Image.open(image)
out_im = out_im.resize(image_size)
out_im = rescale_values(np.array(out_im), max_val, min_val)
n_no_water+=1
mask = np.zeros((128,128))
data_ind += 1
#n=image.rfind('\\')
# plt.imsave(output_path+image[n+1:],out_im)
data[i] = out_im
masks[i] = mask
n_water_dog = 0
n_no_water_dog = 0
for i, image in enumerate(dog_files):
if image in with_watermark_dog:
out_im, mask=add_watermark_variable(image,watermark_path,intensity_watermark,image_size,white_bool, max_val, min_val)
n_water_dog+=1
watermark_inds.append(data_ind)
else:
out_im = Image.open(image)
out_im = out_im.resize(image_size)
out_im = rescale_values(np.array(out_im), max_val, min_val)
n_no_water_dog+=1
mask = np.zeros((128,128))
data_ind += 1
#n=image.rfind('\\')
# plt.imsave(output_path+image[n+1:],out_im)
data[len(cat_files) + i] = out_im
masks[len(cat_files) + i] = mask
print('number of images with watermark:',n_water, n_water_dog)
print('number of images without watermark:',n_no_water, n_no_water_dog)
with open(f'{output_path}.pkl', 'wb') as f:
pickle.dump([data, labels, watermark_inds, masks], f)
return data, masks
SEEDS = [12031212,1234,5845389,23423,343495,2024,3842834,23402304,482347247,1029237127]
N = 6000 # per class
rescaled_string = ''
rescaled_bool = False
if len(sys.argv) > 2:
if sys.argv[2] == 'rescaled':
rescaled_string = '_rescaled'
rescaled_bool = True
for i in [int(sys.argv[1])]:
print("Generating data for split", i)
SEED=SEEDS[i]
np.random.seed(SEED)
os.environ['PYTHONHASHSEED']=str(SEED)
random.seed(SEED)
inds = list(range(N))
print("inds ", len(inds))
# print(inds)
# train_inds = random.sample(inds, k=int(N*0.7))
train_inds = np.random.choice(inds,size=int(N*0.7), replace=False)
inds = np.setdiff1d(inds, train_inds)
print("inds val", len(inds))
val_inds = np.random.choice(inds,size=int(N*0.15), replace=False)
inds = np.setdiff1d(inds, val_inds)
print("inds test", len(inds))
test_inds = np.random.choice(inds,size=int(N*0.15), replace=False)
cat_names_train = list(np.array(cat_paths)[train_inds])
cat_names_val = list(np.array(cat_paths)[val_inds])
cat_names_test = list(np.array(cat_paths)[test_inds])
dog_names_train = list(np.array(dog_paths)[train_inds])
dog_names_val = list(np.array(dog_paths)[val_inds])
dog_names_test = list(np.array(dog_paths)[test_inds])
output_path=f'./artifacts/split_{i}_suppressor_variable_'
save_images(0.5, 0.5, cat_names_train, dog_names_train, watermark_path_jpeg,image_size,intensity,output_path+f'train{rescaled_string}',1, rescaled_bool)
save_images(0.5, 0.5, cat_names_val, dog_names_val, watermark_path_jpeg,image_size,intensity,output_path+f'val{rescaled_string}',1, rescaled_bool)
save_images(0.5, 0.5, cat_names_test, dog_names_test, watermark_path_jpeg,image_size,intensity,output_path+f'test{rescaled_string}',1, rescaled_bool)
output_path=f'./artifacts/split_{i}_confounder_variable_'
save_images(0.2, 0.8, cat_names_train, dog_names_train, watermark_path_jpeg,image_size,intensity,output_path+f'train{rescaled_string}',1, rescaled_bool)
save_images(0.2, 0.8, cat_names_val, dog_names_val, watermark_path_jpeg,image_size,intensity,output_path+f'val{rescaled_string}',1, rescaled_bool)
save_images(0.2, 0.8, cat_names_test, dog_names_test, watermark_path_jpeg,image_size,intensity,output_path+f'test{rescaled_string}',1, rescaled_bool)
print()
output_path=f'./artifacts/split_{i}_no_watermark_variable_'
save_images(0, 0, cat_names_train,dog_names_train, watermark_path_jpeg,image_size,intensity,output_path+f'train{rescaled_string}',1, rescaled_bool)
save_images(0, 0, cat_names_val, dog_names_val, watermark_path_jpeg,image_size,intensity,output_path+f'val{rescaled_string}',1, rescaled_bool)
save_images(0, 0, cat_names_test, dog_names_test, watermark_path_jpeg,image_size,intensity,output_path+f'test{rescaled_string}',1, rescaled_bool)
print()
output_path=f'./artifacts/split_{i}_all_watermark_variable_'
save_images(1, 1, cat_names_test, dog_names_test, watermark_path_jpeg,image_size,intensity,output_path+f'test{rescaled_string}',1, rescaled_bool)
print()