-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_coco_histograms.py
230 lines (161 loc) · 7.6 KB
/
generate_coco_histograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# %matplotlib inline
# %matplotlib inline
from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pylab
pylab.rcParams['figure.figsize'] = (8.0, 10.0)
import cv2
import torch
from torch import nn
from torchvision import datasets
import torchvision.datasets.utils as dataset_utils
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from torchmetrics import Accuracy, AUROC
import time
import torch.nn.functional as F
from PIL import Image
import pickle as pkl
import time
from sklearn.model_selection import StratifiedShuffleSplit
SEED = 1234
def image_histogram_equalization(image, number_bins=256):
# from http://www.janeriksolem.net/histogram-equalization-with-python-and.html
# https://en.wikipedia.org/wiki/Histogram_equalization
# https://stackoverflow.com/a/28520445
# get image histogram
image_histogram, bins = np.histogram(image.flatten(), number_bins, density=True)
cdf = image_histogram.cumsum() # cumulative distribution function
cdf = (number_bins-1) * cdf / cdf[-1] # normalize
# use linear interpolation of cdf to find new pixel values
image_equalized = np.interp(image.flatten(), bins[:-1], cdf)
return image_equalized.reshape(image.shape), cdf
t0 = time.time()
dataDir='coco'
dataType='train2017'
annFile='{}/annotations/instances_{}.json'.format(dataDir,dataType)
# initialize COCO api for instance annotations
coco_train=COCO(annFile)
# dataDir='coco'
# dataType='val2017'
# annFile='{}/annotations/instances_{}.json'.format(dataDir,dataType)
# coco_val = COCO(annFile)
# display COCO categories and supercategories
cats = coco_train.loadCats(coco_train.getCatIds())
nms=[cat['name'] for cat in cats]
print('COCO categories: \n{}\n'.format(' '.join(nms)))
nms = set([cat['supercategory'] for cat in cats])
print('COCO supercategories: \n{}'.format(' '.join(nms)))
animal_id_dict = {}
animal_category_ids = coco_train.getCatIds(supNms=['animal'])
vehicle_category_ids = coco_train.getCatIds(supNms=['vehicle'])
animal_id_dict['animal'] = []
animal_id_dict['vehicle'] = []
for cat_id in animal_category_ids:
animal_id_dict['animal'].extend(coco_train.getImgIds(catIds=cat_id))
# print(len(animal_id_dict[cat_id]))
for cat_id in vehicle_category_ids:
animal_id_dict['vehicle'].extend(coco_train.getImgIds(catIds=cat_id))
# print(len(animal_id_dict[cat_id]))
# animal_id_dict_val = {}
# print('\n')
# for cat_id in animal_category_ids:
# animal_id_dict_val[cat_id] = coco_val.getImgIds(catIds=cat_id)
# print(len(animal_id_dict_val[cat_id]))
animal_intersections = {}
for key, value in animal_id_dict.items():
animal_intersections[key] = []
for key_2, value_2 in animal_id_dict.items():
if key != key_2:
animal_intersections[key].extend(x for x in list(set(value).intersection(value_2)) if x not in animal_intersections[key])
# animal_intersections_val = {}
# for key, value in animal_id_dict_val.items():
# animal_intersections_val[key] = []
# for key_2, value_2 in animal_id_dict_val.items():
# if key != key_2:
# animal_intersections_val[key].extend(x for x in list(set(value).intersection(value_2)) if x not in animal_intersections_val[key])
animal_no_intersections = {}
sum = 0
for key, value in animal_intersections.items():
animal_no_intersections[key] = [x for x in animal_id_dict[key] if x not in value]
print(key, len(animal_id_dict[key]), len(value), len(animal_no_intersections[key]))
sum += len(animal_no_intersections[key])
# animal_no_intersections_val = {}
# sum_val = 0
# for key, value in animal_intersections_val.items():
# animal_no_intersections_val[key] = [x for x in animal_id_dict_val[key] if x not in value]
# print(key, len(animal_id_dict_val[key]), len(value), len(animal_no_intersections_val[key]))
# sum_val += len(animal_no_intersections_val[key])
n = 20000
n_per_class = 10000
im_size = 224
data = np.zeros((n, im_size,im_size,3))
data_not_norm = np.zeros((n, im_size,im_size,3))
labels = np.zeros((n,))
masks = np.zeros((n, im_size,im_size))
j = 0
for i, (key, value) in enumerate(animal_no_intersections.items()):
if len(value) >= n_per_class:
print(i, key, len(value))
for id in value[:n_per_class]:
img = coco_train.loadImgs(id)[0]
I = cv2.resize(cv2.imread(f'./coco/train2017/{img["file_name"]}', cv2.IMREAD_COLOR), (im_size,im_size))
out_norm = np.asarray(cv2.cvtColor( I, cv2.COLOR_RGB2HLS )) # a bitmap conversion
data_not_norm[j] = out_norm.copy()
out_norm[:,:,1] = image_histogram_equalization(out_norm[:,:,1])[0]
out_norm = out_norm / 255
annotation_ids = coco_train.getAnnIds(imgIds=id, catIds=[], iscrowd=False)
annotations = coco_train.loadAnns(annotation_ids)
mask = np.zeros(coco_train.annToMask(annotations[0]).shape)
for annotation in annotations:
# print(annotation)
if key == 'animal':
if annotation['category_id'] in animal_category_ids:
masks_animal = coco_train.annToMask(annotation)
# print(masks)
mask += masks_animal
elif key == 'vehicle':
if annotation['category_id'] in vehicle_category_ids:
masks_animal = coco_train.annToMask(annotation)
mask += masks_animal
mask[mask!=0] = 1
mask_im = Image.fromarray(np.uint8(mask)).convert('RGB').resize((im_size,im_size))
data[j] = out_norm
labels[j] = i
masks[j] = np.asarray(mask_im)[:,:,0]
j+=1
fig,axs = plt.subplots(1,2, figsize=(12,6))
axs[0].hist(data_not_norm[:,:,:,1].flatten(), bins=256) # arguments are passed to np.histogram
axs[1].set_title("lightness distribution histogram")
axs[1].hist(data[:,:,:,1].flatten(), bins=256) # arguments are passed to np.histogram
axs[1].set_title("Normalised lightness distribution histogram")
plt.savefig('lightness_histograms.png', bbox_inches='tight')
# def create_conf_data(data, n=20000, n_per_class=10000):
# conf_data = data.copy()
# # animals = brightness * 0.8
# # vehicles = brightness * 0.5
# # should I use the same brightness for all images of the given class?
# # or should I do a 50% normalised 50% not normalised split?
# return conf_data
# def create_sup_data(data, n=20000, n_per_class=10000):
# sup_data = data.copy()
# # random brightness - should I pick ~5 fixed brightness levels and evenly distribute, or should I use a continuous distribution?
# return sup_data
# data_splitter = StratifiedShuffleSplit(n_splits=1, test_size=0.4, random_state=SEED)
# train_indices, val_indices = list(data_splitter.split(X=data, y=labels))[0]
# x_train = data[train_indices]
# y_train = labels[train_indices]
# x_val_test = data[val_indices]
# y_val_test = labels[val_indices]
# data_splitter = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=SEED)
# val_indices, test_indices = list(data_splitter.split(X=x_val_test, y=y_val_test))[0]
# x_val = x_val_test[val_indices]
# y_val = y_val_test[val_indices]
# x_test = x_val_test[test_indices]
# y_test = y_val_test[test_indices]
# split_dataset_norm = [(x_train, y_train, masks[train_indices]), (x_val, y_val, masks[val_indices]), (x_test, y_test, masks[test_indices])]
# with open('coco_data_norm.pkl', 'wb') as f:
# pkl.dump(split_dataset_norm, f)
# print('time to pre-process and save coco datasets:', time.time() - t0)