-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_energy_splits.py
485 lines (365 loc) · 18.4 KB
/
calculate_energy_splits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import os
import sys
import numpy as np
import time
import pickle
from torch import manual_seed
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from PIL import Image
from scipy.ndimage import sobel, laplace
SEEDS = [12031212,1234,5845389,23423,343495,2024,3842834,23402304,482347247,1029237127]
SEED=SEEDS[int(sys.argv[1])]
manual_seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
os.environ['PYTHONHASHSEED']=str(SEED)
random.seed(SEED)
# if sys.argv[2] is not None:
# DEVICE = torch.device("cuda",int(sys.argv[2]))
# else:
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#DEVICE = 'cpu'
print('testing testing 123')
print(DEVICE)
# DEVICE = 'cpu'
from captum.attr import IntegratedGradients, GradientShap, Deconvolution, LRP, Lime
from zennit.composites import EpsilonAlpha2Beta1
split = sys.argv[1]
model_ind = sys.argv[2]
print(f'SPLIT: {split} MODEL IND: {model_ind}')
class Net(nn.Module):
def __init__(self, num_classes=2):
super(Net, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer3 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer5 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(64*128*8, 4096),
nn.ReLU())
self.fc1 = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(4096, 1028),
nn.ReLU())
self.fc2= nn.Sequential(
nn.Linear(1028, num_classes))
def forward(self, x):
out = self.layer1(x)
out = self.layer3(out)
out = self.layer5(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
out = self.fc1(out)
out = self.fc2(out)
return out
def rescale_values(image,max_val,min_val):
'''
image - numpy array
max_val/min_val - float
'''
return (image-image.min())/(image.max()-image.min())*(max_val-min_val)+min_val
variable_string = f'_{sys.argv[3]}' if sys.argv[3] == 'variable' else ''
# variable position WM data has an extra return arg (stored wm array)
try:
with open(f'./artifacts/split_{split}_no_watermark{variable_string}_test.pkl', 'rb') as f:
no_watermark_dataset, labels_test_no, _ = pickle.load(f)
no_watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test_no.flatten()[i]] for i,x in enumerate(no_watermark_dataset)]
with open(f'./artifacts/split_{split}_all_watermark{variable_string}_test.pkl', 'rb') as f:
watermark_dataset, labels_test, _ = pickle.load(f)
watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test.flatten()[i]] for i,x in enumerate(watermark_dataset)]
except:
with open(f'./artifacts/split_{split}_no_watermark{variable_string}_test.pkl', 'rb') as f:
no_watermark_dataset, labels_test_no, _, _ = pickle.load(f)
no_watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test_no.flatten()[i]] for i,x in enumerate(no_watermark_dataset)]
with open(f'./artifacts/split_{split}_all_watermark{variable_string}_test.pkl', 'rb') as f:
watermark_dataset, labels_test, _, masks_wm = pickle.load(f)
watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test.flatten()[i]] for i,x in enumerate(watermark_dataset)]
folder=os.getcwd()
watermark_path=folder+'/watermark banner.jpg'
watermark = Image.open(watermark_path)
w=int(watermark_dataset[0][0].shape[1])
h=int(watermark.size[1]*w/watermark.size[0])
watermark = watermark.resize((w,h))
watermark=np.array(watermark)
rgb=rescale_values(watermark,1,0)
r, g, blue = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 1-(0.2989 * r + 0.5870 * g + 0.1140 * blue)
white=np.ones((w,w))
white[0:gray.shape[0],0:gray.shape[1]]=gray
bin_water=1.0*(white<1)
def lrp(data,model,target,device):
# create a composite instance
#composite = EpsilonPlusFlat()
composite = EpsilonAlpha2Beta1()
# use the following instead to ignore bias for the relevance
# composite = EpsilonPlusFlat(zero_params='bias')
# make sure the input requires a gradient
data.requires_grad = True
# compute the output and gradient within the composite's context
with composite.context(model) as modified_model:
modified_model=modified_model.to(device)
output = modified_model(data.to(device)).to(device)
grad = torch.eye(2, device=device)[[target]].to(device)
# gradient/ relevance wrt. class/output 0
output.backward(gradient=grad)
# relevance is not accumulated in .grad if using torch.autograd.grad
# relevance, = torch.autograd.grad(output, input, torch.eye(10)[[0])
# gradient is accumulated in input.grad
att=abs(data.grad.detach().cpu().squeeze().numpy().transpose(1,2,0))
rgb_weights = [0.2989, 0.5870, 0.1140]
grayscale_att_lrp = np.dot(att[...,:3], rgb_weights)
return grayscale_att_lrp
def plot_atts(data,model,target):
# data is a tensor of shape torch.Size([1, 3, 128, 128])
# model is
# target is an integer
torch.manual_seed(SEED)
out=model(data)
Y_probs = F.softmax(out[0], dim=-1)
target = int(target)
ig_att = np.transpose(IntegratedGradients(model).attribute(data, target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
# sal_att = np.transpose(Saliency(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
gradshap_att = np.transpose(GradientShap(model).attribute(data,target=target, baselines=torch.zeros(data.shape).to(DEVICE)).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
# backprop_att = np.transpose(GuidedBackprop(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
# ix_att = np.transpose(InputXGradient(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
deconv_att = np.transpose(Deconvolution(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
lrp_att=np.transpose(LRP(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
lime_att=np.transpose(Lime(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
lrp_ab = lrp(data,model,target, DEVICE)
rgb_weights = [0.2989, 0.5870, 0.1140]
grayscale_att_deconv = np.dot(deconv_att[...,:3], rgb_weights)
# grayscale_att_ix = np.dot(ix_att[...,:3], rgb_weights)
# grayscale_att_backprp = np.dot(backprop_att[...,:3], rgb_weights)
grayscale_att_shap = np.dot(gradshap_att[...,:3], rgb_weights)
# grayscale_att_sal = np.dot(sal_att[...,:3], rgb_weights)
grayscale_att_ig = np.dot(ig_att[...,:3], rgb_weights)
grayscale_att_lrp = np.dot(lrp_att[...,:3], rgb_weights)
grayscale_att_lime = np.dot(lime_att[...,:3], rgb_weights)
atts={
'deconv':abs(grayscale_att_deconv),
# 'saliency':abs(grayscale_att_sal),
'int_grads':abs(grayscale_att_ig),
'shap':abs(grayscale_att_shap),
# 'backprop':abs(grayscale_att_backprp),
# 'ix':abs(grayscale_att_ix),
'lrp':abs(grayscale_att_lrp),
'lrp_ab':abs(lrp_ab),
'lime': abs(grayscale_att_lime)
}
return atts,Y_probs
# def energy(att):
# image_size=att.shape[0]*att.shape[1]
# watermark_size=np.sum(bin_water)
# watermark_att=att*bin_water
# watermark_energy=np.sum(watermark_att)
# image_energy=np.sum(att)
# energy=(watermark_energy/watermark_size)/(image_energy/image_size)
# return energy
def energy(att):
image_size=att.shape[0]*att.shape[1]
watermark_size=np.sum(bin_water)
watermark_att=att*bin_water
watermark_energy=np.sum(watermark_att)
image_energy=np.sum(att)
# Gives energy(watermark) = 7.858
energy=(watermark_energy/watermark_size)/(image_energy/image_size)
# Gives energy(watermark) = 1.0
# energy = (np.sum(att*bin_water)/att.shape[0]*att.shape[1]) / (np.sum(att)/att.shape[0]*att.shape[1])
return energy
def load_trained(path):
model = Net()
model.load_state_dict(torch.load(path, map_location=DEVICE))
return model
energy_water_conf={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
energy_water_sup={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
energy_water_no={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
energy_no_water_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': [],}
energy_no_water_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
energy_no_water_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
explanations_water_conf={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
explanations_water_sup={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
explanations_water_no={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
explanations_no_water_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': [],}
explanations_no_water_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
explanations_no_water_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
model_conf=load_trained(f'./models/cnn_confounder{variable_string}_{split}_{model_ind}.pt').eval().to(DEVICE)
model_sup=load_trained(f'./models/cnn_suppressor{variable_string}_{split}_{model_ind}.pt').eval().to(DEVICE)
model_no=load_trained(f'./models/cnn_no_watermark{variable_string}_{split}_{model_ind}.pt').eval().to(DEVICE)
folder=os.getcwd()+'/images'
print(folder)
t0=time.time()
N_test = 1800
wm_avg = np.zeros((N_test,3,128,128))
no_wm_avg = np.zeros((N_test,3,128,128))
for i in range(N_test):
wm_avg[i] = watermark_dataset[i][0]
no_wm_avg[i] = no_watermark_dataset[i][0]
wm_avg = np.mean(wm_avg, axis=0)
no_wm_avg = np.mean(no_wm_avg, axis=0)
rgb_weights = [0.2989, 0.5870, 0.1140]
res = {
'laplace': [[], []],
'sobel': [[], []],
'x': [[], []]
}
for i in range(len(watermark_dataset)):
w_image = watermark_dataset[i]
w_target=w_image[1]
w_image=w_image[0]
w_example=torch.tensor(w_image).unsqueeze(0).to(DEVICE,dtype=torch.float)
w_target_conf = torch.max(model_conf(w_example), 1)[1].to(int)
w_target_sup = torch.max(model_sup(w_example), 1)[1].to(int)
w_target_no = torch.max(model_no(w_example), 1)[1].to(int)
nw_image = no_watermark_dataset[i]
nw_target=nw_image[1]
nw_image=nw_image[0]
nw_example=torch.tensor(nw_image).unsqueeze(0).to(DEVICE,dtype=torch.float)
nw_target_conf = torch.max(model_conf(nw_example), 1)[1].to(int)
nw_target_sup = torch.max(model_sup(nw_example), 1)[1].to(int)
nw_target_no = torch.max(model_no(nw_example), 1)[1].to(int)
# explanations for predicted class (n)w_target_{MODEL}
a_conf_w,_=plot_atts(w_example,model_conf,w_target_conf)
a_sup_w,_=plot_atts(w_example,model_sup,w_target_sup)
a_no_w,_=plot_atts(w_example,model_no,w_target_no)
a_conf_nw,_=plot_atts(nw_example,model_conf,nw_target_conf)
a_sup_nw,_=plot_atts(nw_example,model_sup,nw_target_sup)
a_no_nw,_=plot_atts(nw_example,model_no,nw_target_no)
# # explanations for ground truth class (n)w_target
# a_conf_w_gt,_=plot_atts(w_example,model_conf,w_target)
# a_sup_w_gt,_=plot_atts(w_example,model_sup,w_target)
# a_no_w_gt,_=plot_atts(w_example,model_no,w_target)
# a_conf_nw_gt,_=plot_atts(nw_example,model_conf,nw_target)
# a_sup_nw_gt,_=plot_atts(nw_example,model_sup,nw_target)
# a_no_nw_gt,_=plot_atts(nw_example,model_no,nw_target)
for method in list(energy_water_conf.keys()):
energy_water_conf[method].append(energy(a_conf_w[method]))
energy_water_sup[method].append(energy(a_sup_w[method]))
energy_water_no[method].append(energy(a_no_w[method]))
energy_no_water_conf[method].append(energy(a_conf_nw[method]))
energy_no_water_sup[method].append(energy(a_sup_nw[method]))
energy_no_water_no[method].append(energy(a_no_nw[method]))
explanations_water_conf[method].append(a_conf_w[method])
explanations_water_sup[method].append(a_sup_w[method])
explanations_water_no[method].append(a_no_w[method])
explanations_no_water_conf[method].append(a_conf_nw[method])
explanations_no_water_sup[method].append(a_sup_nw[method])
explanations_no_water_no[method].append(a_no_nw[method])
# energy_water_conf_gt[method].append(energy(a_conf_w_gt[method]))
# energy_water_sup_gt[method].append(energy(a_sup_w_gt[method]))
# energy_water_no_gt[method].append(energy(a_no_w_gt[method]))
# energy_no_water_conf_gt[method].append(energy(a_conf_nw_gt[method]))
# energy_no_water_sup_gt[method].append(energy(a_sup_nw_gt[method]))
# energy_no_water_no_gt[method].append(energy(a_no_nw_gt[method]))
x_wm = energy(np.dot(w_image.copy().transpose(1,2,0)[...,:3], rgb_weights))
x_no = energy(np.dot(nw_image.copy().transpose(1,2,0)[...,:3], rgb_weights))
sample = w_image.copy().transpose(1,2,0) - wm_avg.transpose(1,2,0)
img_r = sample[:,:,0]
img_g = sample[:,:,1]
img_b = sample[:,:,2]
lapl_wm = energy(np.abs(laplace(img_r)) + np.abs(laplace(img_g)) + np.abs(laplace(img_b)))
sob_wm = energy(np.abs(sobel(img_r)) + np.abs(sobel(img_g)) + np.abs(sobel(img_b)))
# nw_image.append(energy(np.dot(nw_image.copy().transpose(1,2,0)[...,:3], rgb_weights)))
sample = nw_image.copy().transpose(1,2,0) - no_wm_avg.transpose(1,2,0)
img_r = sample[:,:,0]
img_g = sample[:,:,1]
img_b = sample[:,:,2]
lapl_no = energy(np.abs(laplace(img_r)) + np.abs(laplace(img_g)) + np.abs(laplace(img_b)))
sob_no = energy(np.abs(sobel(img_r)) + np.abs(sobel(img_g)) + np.abs(sobel(img_b)))
res['laplace'][0].append(lapl_wm)
res['laplace'][1].append(lapl_no)
res['sobel'][0].append(sob_wm)
res['sobel'][1].append(sob_no)
res['x'][0].append(x_wm)
res['x'][1].append(x_no)
if (i%100)==0:
print(i, 'out of', len(watermark_dataset))
print(time.time()-t0)
# t0=time.time()
for baseline, results in res.items():
energy_water_conf[baseline] = results[0]
energy_no_water_conf[baseline] = results[1]
energy_water_sup[baseline] = results[0]
energy_no_water_sup[baseline] = results[1]
energy_no_water_conf[baseline] = results[0]
energy_no_water_no[baseline] = results[1]
with open(f'./energies/energy_water_conf_pred{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(energy_water_conf, f)
with open(f'./energies/energy_water_sup_pred{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(energy_water_sup, f)
with open(f'./energies/energy_water_no_pred{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(energy_water_no, f)
with open(f'./energies/energy_no_water_conf_pred{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(energy_no_water_conf, f)
with open(f'./energies/energy_no_water_sup_pred{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(energy_no_water_sup, f)
with open(f'./energies/energy_no_water_no_pred{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(energy_no_water_no, f)
import logging
import matplotlib.pyplot as plt
from sklearn import cluster, decomposition
from sklearn.preprocessing import MinMaxScaler
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
def plot_gallery(title, images, image_shape=(128,128), n_col=2, n_row=5, out_file='', cmap=plt.cm.gray):
fig, axs = plt.subplots(
nrows=n_row,
ncols=n_col,
figsize=(2.0 * n_col, 2.3 * n_row),
facecolor="white",
constrained_layout=True,
)
fig.set_constrained_layout_pads(w_pad=0.01, h_pad=0.02, hspace=0, wspace=0)
fig.set_edgecolor("black")
fig.suptitle(title, size=16)
for ax, vec in zip(axs.flat, images):
vmax = max(vec.max(), -vec.min())
im = ax.imshow(
vec.reshape(image_shape),
# vec.reshape(image_shape).astype(np.int64),
cmap=cmap,
interpolation="nearest",
vmin=-vmax,
vmax=vmax,
)
ax.axis("off")
fig.colorbar(im, ax=axs, orientation="horizontal", shrink=0.99, aspect=40, pad=0.01)
plt.savefig(out_file)
config_strings = ['water_conf', 'no_conf', 'water_sup', 'no_sup', 'water_no', 'no_no']
rows, columns = 2, 5
n_plot = 10
for i, explanations in enumerate([explanations_water_conf, explanations_no_water_conf, explanations_water_sup, explanations_no_water_sup, explanations_water_no, explanations_no_water_no]):
for method in list(explanations.keys()):
print(f'{method} explanations PCA for {config_strings[i]} {sys.argv[3]} model split {split}')
explanations_flattened = np.asarray(explanations[method]).reshape((np.asarray(explanations[method]).shape[0], -1))
n_samples, n_features = explanations_flattened.shape
print(n_samples, n_features)
# Global centering (focus on one feature, centering all samples)
explanations_centered = explanations_flattened - explanations_flattened.mean(axis=0)
# Local centering (focus on one sample, centering all features)
explanations_centered -= explanations_centered.mean(axis=1).reshape(n_samples, -1)
# 0 < n_components < 1 => n_components% variance explained, aka 0.98 => 98% of variance must be explained by the number of components subsequently chosen
pca_estimator = decomposition.PCA(
n_components=0.98, svd_solver="full"
)
pca_estimator.fit(explanations_centered)
components = pca_estimator.components_
print(components.shape)
print(f'Number of PCA components: {pca_estimator.components_}')
with open(f'./pcs/pc_{config_strings[i]}{variable_string}_{split}_{model_ind}.pickle', 'wb') as f:
pickle.dump(components, f)