-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
311 lines (264 loc) · 11.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
""" Pytorch model that performs next sequence prediction at the intra-sequential element level using transformer with sequence level static data
ie. ['sos','sos'] -> ['t1', 's1'] where t and s are from different categorical sets,
but where value of s1 is dependent on t1
"""
from typing import List
import torch
import torch.nn as nn
import transformers
from torch.tensor import Tensor
from torchtext.data.field import Field
from transformers import DistilBertModel
import math
from utils import get_field_term_weights
class IndependentCategorical(object):
def __init__(
self, name: str, num_levels: int, padding_idx: int, term_weights: List[Tensor],
) -> None:
""" independent categorical used to create embedding and classification layers"""
self.name = name
self.num_levels = num_levels
self.padding_idx = padding_idx
self.term_weights: List = term_weights
@classmethod
def from_torchtext_field(
cls, name: str, field: Field, total_num_samples: int, padding_token="<pad>"
):
num_levels: int = len(field.vocab.itos)
padding_idx: int = field.vocab.stoi[padding_token]
term_weights: Tensor = get_field_term_weights(field, total_num_samples)
return IndependentCategorical(name, num_levels, padding_idx, term_weights)
class SAModelConfig(object):
pass
class ActClassifierHead(nn.Module):
def __init__(self, n_embd, p_drop, n_classes) -> None:
super(ActClassifierHead, self).__init__()
self.ln1 = nn.LayerNorm(n_embd)
self.mlp = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.GELU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(p_drop),
)
self.final_class = nn.Linear(n_embd, n_classes)
def forward(self, x):
return self.final_class(self.mlp(self.ln1(x)))
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[: x.size(0), :]
return self.dropout(x)
class SAModel(nn.Module):
def __init__(
self,
sequence_length: int,
categorical_embedding_dim: int,
num_attn_heads: int,
num_hidden: int,
num_transformer_layers: int,
learning_rate: float,
independent_categoricals: List[IndependentCategorical],
freeze_static_model_weights: bool,
warmup_steps: int,
total_steps: int,
device,
static_data_embedding_size: int = 768,
dropout: float = 0.2,
grad_norm_clip: float = 1.0,
) -> None:
super(SAModel, self).__init__()
self.sequence_length = sequence_length
self.categorical_embedding_dim = categorical_embedding_dim
self.num_attn_heads = num_attn_heads
self.num_hidden = num_hidden
self.num_transformer_layers = num_transformer_layers
self.independent_categoricals = independent_categoricals
self.learning_rate = learning_rate
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.num_independent_categoricals = len(independent_categoricals)
assert (
self.categorical_embedding_dim
* self.num_independent_categoricals
% self.num_attn_heads
== 0
)
self.transformer_dim_sz = (
categorical_embedding_dim * self.num_independent_categoricals
)
self.dropout = dropout
self.device = device
self.weight_initrange = 0.1
self._generate_embedding_layers()
self._generate_classification_layers()
self._generate_loss_criterion()
# self._init_weights()
self.cat_emb_layer_norm = nn.LayerNorm(
self.categorical_embedding_dim * self.num_independent_categoricals
)
self.grad_norm_clip = grad_norm_clip
self.mask = None
self.transformer_decoder_layer = nn.TransformerDecoderLayer(
self.transformer_dim_sz, self.num_attn_heads, self.num_hidden, self.dropout,
)
self.transformer_decoder = nn.TransformerDecoder(
self.transformer_decoder_layer, self.num_transformer_layers
)
self.classification_tnsr_drop = nn.Dropout(dropout)
self.pos_encoder = PositionalEncoding(
self.num_independent_categoricals * self.categorical_embedding_dim, dropout
)
try:
self.static_data_model = DistilBertModel.from_pretrained(
"./distilbert_weights"
)
except:
try:
self.static_data_model = DistilBertModel.from_pretrained(
"distilbert-base-uncased"
)
except Exception as e:
raise (e)
if freeze_static_model_weights:
for param in self.static_data_model.parameters():
param.requires_grad = False
self.static_data_embedding_size = static_data_embedding_size
self.static_data_squeeze = nn.Linear(
self.static_data_embedding_size, self.transformer_dim_sz
)
self.static_data_layer_norm = nn.LayerNorm(self.transformer_dim_sz)
self.optimizer = torch.optim.AdamW(self.parameters(), self.learning_rate)
assert self._pad_tokens_identical()
self.tgt_pad_idx = self.independent_categoricals[0].padding_idx
self.scheduler = transformers.get_cosine_with_hard_restarts_schedule_with_warmup(
self.optimizer, self.warmup_steps, self.total_steps, 6
)
def _pad_tokens_identical(self):
pts = {ind_cat.padding_idx for ind_cat in self.independent_categoricals}
if len(pts) > 1:
raise ValueError(
"Padding index values should be the same for all independent categoricals to support loss masking."
)
return True
def _generate_loss_criterion(self):
" generates an instance of a loss criterion for each independent categorical"
self.loss_criteria = [
nn.CrossEntropyLoss(
ignore_index=ind_cat.padding_idx, weight=ind_cat.term_weights
).to(self.device)
for ind_cat in self.independent_categoricals
]
def loss(self, preds: List[Tensor], targets: Tensor):
""" Get loss b/w preds and targets using the list of crierion"""
loss = None
for idx, pred in enumerate(preds):
pred_cat_num_levels = self.independent_categoricals[idx].num_levels
pred = pred.reshape(
pred.numel() // pred_cat_num_levels, pred_cat_num_levels
)
target = targets[..., idx].flatten()
crit = self.loss_criteria[idx]
loss = crit(pred, target) if not loss else crit(pred, target) + loss
return loss
def _generate_classification_layers(self):
" Generates a linear classification layer for each independent categorical."
self.cat_linear_classifiers = nn.ModuleList(
[
ActClassifierHead(
self.transformer_dim_sz, self.dropout, ind_cat.num_levels
)
for ind_cat in self.independent_categoricals
]
)
def _generate_embedding_layers(self):
" Generate embedding layers for each independent categorical."
# TODO: allow dynamic embedding dim based on number of levels in each category
self.cat_embeddings = nn.ModuleList(
[
nn.Embedding(
ind_cat.num_levels,
self.categorical_embedding_dim,
padding_idx=ind_cat.padding_idx,
)
for ind_cat in self.independent_categoricals
]
)
def _init_weights(self):
" Initialize weights appropriate for transformer for each linear and embedding layer."
for layer in self.cat_embeddings:
layer.weight.data.uniform_(-self.weight_initrange, self.weight_initrange)
for layer in self.cat_linear_classifiers:
layer.weight.data.uniform_(-self.weight_initrange, self.weight_initrange)
layer.bias.data.zero_()
def _generate_square_target_mask(self, seq_len):
""" Generates a top right triangle square mask of the target sequence.
Prevents attending to targets that only exist forward in time. """
tgt_mask = (torch.triu(torch.ones(seq_len, seq_len)) == 1).transpose(0, 1)
tgt_mask = (
tgt_mask.float()
.masked_fill(tgt_mask == 0, float("-inf"))
.masked_fill(tgt_mask == 1, float(0.0))
)
return tgt_mask
def forward(self, data: Tensor, static_data: Tensor):
self.mask = (
self._generate_square_target_mask(self.sequence_length)
if self.mask is None
else self.mask
)
# combine all DB word vectors emitted into a single timestep feature vector
static_data_embedding = (
self.static_data_model(**static_data)[0].mean(1).unsqueeze(0)
)
# ensure batch size of static data same as seqential data
assert list(static_data_embedding.shape[:-1]) == [1, data.shape[1]]
if (
static_data_embedding.shape[-1] != self.transformer_dim_sz
): # force static emb sz equal to cat emb sz
static_data_embedding = self.static_data_squeeze(static_data_embedding)
cat_embeddings_list = []
for idx, embedding in enumerate(self.cat_embeddings):
cat_embeddings_list.append(embedding(data[..., idx]))
cats_combined_embedding = torch.cat(cat_embeddings_list, dim=2) # * math.sqrt(
# self.transformer_dim_sz)
# cats_combined_embedding = self.pos_encoder(cats_combined_embedding)
tgt_key_pad_mask = data == self.tgt_pad_idx
tgt_key_pad_mask = tgt_key_pad_mask.permute(1, 0, 2)[
:, :, 0
] # (target sequence length x batch size)
if self.training:
tfmr_out = self.transformer_decoder(
cats_combined_embedding,
memory=static_data_embedding,
tgt_mask=self.mask.to(self.device),
tgt_key_padding_mask=tgt_key_pad_mask, # .to(self.device),
)
else:
tfmr_out = self.transformer_decoder(
cats_combined_embedding,
memory=static_data_embedding)
tfmr_out = self.classification_tnsr_drop(tfmr_out)
classification_layer_outputs = []
for classification_layer in self.cat_linear_classifiers:
classification_layer_outputs.append(classification_layer(tfmr_out))
return classification_layer_outputs
def learn(self, data: Tensor, static_data: Tensor, targets: Tensor):
self.optimizer.zero_grad()
preds = self.forward(data, static_data)
loss = self.loss(preds, targets)
loss.backward()
# torch.nn.utils.clip_grad_norm_(self.parameters(), self.grad_norm_clip)
self.optimizer.step()
self.scheduler.step()
return loss.item()