-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlandmarks.py
65 lines (56 loc) · 1.72 KB
/
landmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import pandas as pd
import numpy as np
import cv2
def extract_landmarks(image, mp_pose, cols):
pre_list = []
with mp_pose.Pose(static_image_mode=True, enable_segmentation=True) as pose:
result = pose.process(
cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
try:
# xy = bounding_box(result.pose_landmarks.landmark)
for landmark in result.pose_landmarks.landmark:
pre_list.append(landmark)
predict = True
except AttributeError:
return True, pd.DataFrame(), None
if predict == True:
gen1116 = np.array([
[
pre_list[m].x,
pre_list[m].y,
pre_list[m].z,
pre_list[m].visibility
] for m in range(11, 17)
]).flatten().tolist()
gen2333 = np.array([
[
pre_list[m].x,
pre_list[m].y,
pre_list[m].z,
pre_list[m].visibility
] for m in range(23, 33)
]).flatten().tolist()
gen1116.extend(gen2333)
all_list = [
pre_list[0].x,
pre_list[0].y,
pre_list[0].z,
pre_list[0].visibility,
]
all_list.extend(gen1116)
return False, pd.DataFrame([all_list], columns=cols), result.pose_landmarks
# def bounding_box(landmarks):
# w = 1280
# h = 720
# xy = [0, 0, w, h]
# for landmark in landmarks:
# x, y = int(landmark.x * w), int(landmark.y * h)
# if x > xy[0]:
# xy[0] = x
# if x < xy[2]:
# xy[2] = x
# if y > xy[1]:
# xy[1] = y
# if y < xy[3]:
# xy[3] = y
# return xy