diff --git a/docs/build/html/.buildinfo b/docs/build/html/.buildinfo new file mode 100644 index 0000000000..9ca0f97eb0 --- /dev/null +++ b/docs/build/html/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 35514fa01698149aed2db742a990d2e9 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/build/html/Bindings.html b/docs/build/html/Bindings.html new file mode 100644 index 0000000000..2875c7279d --- /dev/null +++ b/docs/build/html/Bindings.html @@ -0,0 +1,131 @@ + + + + + + + Bindings — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Bindings

+

GTSAM provides two native C++11 libraries gtsam and gtsam_unstable. +Both are also wrapped into other languages for easy prototyping.

+
+

Python wrapper

+

Write me!

+
+
+

Matlab wrapper

+

Write me!

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/Building.html b/docs/build/html/Building.html new file mode 100644 index 0000000000..a8542ccb9f --- /dev/null +++ b/docs/build/html/Building.html @@ -0,0 +1,120 @@ + + + + + + + Building — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Building

+

From: https://gtsam.org/build/

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/CppExamples.html b/docs/build/html/CppExamples.html new file mode 100644 index 0000000000..ed0764cfd0 --- /dev/null +++ b/docs/build/html/CppExamples.html @@ -0,0 +1,149 @@ + + + + + + + C++ Examples — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

C++ Examples

+

(Some selected examples from source code.)

+
+

Kalman filter example

+
+
+

2D SLAM example

+
+
+

3D SLAM example

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/FactorGraphs.html b/docs/build/html/FactorGraphs.html new file mode 100644 index 0000000000..37a522100e --- /dev/null +++ b/docs/build/html/FactorGraphs.html @@ -0,0 +1,176 @@ + + + + + + + Factor Graphs — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Factor Graphs

+

Let us start with a one-page primer on factor graphs, which in no way +replaces the excellent and detailed reviews by Kschischang et +al. (2001) and +Loeliger (2004).

+

|image: 2\_Users\_dellaert\_git\_github\_doc\_images\_hmm.png| Figure 1: +An HMM, unrolled over three time-steps, represented by a Bayes net.

+

Figure 1 shows the Bayes network for a hidden +Markov model (HMM) over three time steps. In a Bayes net, each node is +associated with a conditional density: the top Markov chain encodes the +prior \(P\left( X_{1} \right)\) and transition probabilities +\(P\left( X_{2} \middle| X_{1} \right)\) and +\(P\left( X_{3} \middle| X_{2} \right)\), whereas measurements +\(Z_{t}\) depend only on the state \(X_{t}\), modeled by +conditional densities \(P\left( Z_{t} \middle| X_{t} \right)\). +Given known measurements \(z_{1}\), \(z_{2}\) and \(z_{3}\) +we are interested in the hidden state sequence +\(\left( {X_{1},X_{2},X_{3}} \right)\) that maximizes the posterior +probability +\(P\left( X_{1},X_{2},X_{3} \middle| Z_{1} = z_{1},Z_{2} = z_{2},Z_{3} = z_{3} \right)\). +Since the measurements \(Z_{1}\), \(Z_{2}\), and \(Z_{3}\) +are known, the posterior is proportional to the product of six +factors, three of which derive from the the Markov chain, and three +likelihood factors defined as +\(L\left( {X_{t};z} \right) \propto P\left( Z_{t} = z \middle| X_{t} \right)\):

+
+\[P\left( X_{1},X_{2},X_{3} \middle| Z_{1},Z_{2},Z_{3} \right) \propto P\left( X_{1} \right)P\left( X_{2} \middle| X_{1} \right)P\left( X_{3} \middle| X_{2} \right)L\left( {X_{1};z_{1}} \right)L\left( {X_{2};z_{2}} \right)L\left( {X_{3};z_{3}} \right)\]
+

|image: 3\_Users\_dellaert\_git\_github\_doc\_images\_hmm-FG.png| Figure +2: An HMM with observed measurements, unrolled over time, represented as +a factor graph.

+

This motivates a different graphical model, a factor graph, in which +we only represent the unknown variables \(X_{1}\), \(X_{2}\), +and \(X_{3}\), connected to factors that encode probabilistic +information on them, as in Figure 2. To do maximum +a-posteriori (MAP) inference, we then maximize the product

+
+\[f\left( {X_{1},X_{2},X_{3}} \right) = \prod f_{i}\left( \mathcal{X}_{i} \right)\]
+

i.e., the value of the factor graph. It should be clear from the +figure that the connectivity of a factor graph encodes, for each factor +\(f_{i}\), which subset of variables \(\mathcal{X}_{i}\) it +depends on. In the examples below, we use factor graphs to model more +complex MAP inference problems in robotics.

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/Installing.html b/docs/build/html/Installing.html new file mode 100644 index 0000000000..0512196cbe --- /dev/null +++ b/docs/build/html/Installing.html @@ -0,0 +1,225 @@ + + + + + + + Installing — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Installing

+
+

Getting started

+

In the root library folder execute:

+ +
+
+    #!bash
+    $ mkdir build
+    $ cd build
+    $ cmake ..
+    $ make check (optional, runs unit tests)
+    $ make install
+
+ +

Prerequisites:

+
    +
  • Boost >= 1.43 (Ubuntu: sudo apt-get install libboost-all-dev)
  • +
  • CMake >= 3.0 (Ubuntu: sudo apt-get install cmake)
  • +
  • A modern compiler, i.e., at least gcc 4.7.3 on Linux.
  • +
+

+ + + +
+
+
+
+

Importing GTSAM in your projects

+

Install GTSAM from Ubuntu PPA

+ +

GTSAM can be installed on Ubuntu via these PPA repositories as well. +At present (Nov 2020), packages for Xenial (u16.04), Bionic (u18.04), and Focal (u20.04) are published.

+ +

Add PPA for GTSAM nightly builds (develop branch)

+ +
# Add PPA
+sudo add-apt-repository ppa:borglab/gtsam-develop
+sudo apt update  # not necessary since Bionic
+# Install:
+sudo apt install libgtsam-dev libgtsam-unstable-dev
+
+ +

Add PPA for the latest GTSAM 4.x stable release

+ +
# Add PPA
+sudo add-apt-repository ppa:borglab/gtsam-release-4.0
+sudo apt update  # not necessary since Bionic
+# Install:
+sudo apt install libgtsam-dev libgtsam-unstable-dev
+
+ +

Install GTSAM from Arch Linux AUR

+ +

Note: Installing GTSAM on Arch Linux is not tested by the GTSAM developers.

+ +

GTSAM is available in the Arch User Repository +(AUR) as +gtsam.

+ +

Note you can manually install the package by following the instructions on the +Arch Wiki +or use an AUR helper like +yay +(recommended for ease of install).

+ +

It is also recommended to use the +arch4edu +repository. They are hosting many packages related to education and research, +including robotics such as ROS. Adding a repository allows for you to install +binaries of packages, instead of compiling them from source. +This will greatly speed up your installation time. Visit here to add and use arch4edu.

+ +

Install GTSAM

+
yay -S gtsam
+
+ +

or

+ +

Install GTSAM with Intel Accelerations

+ +
yay -S gtsam-mkl
+
+ +

To discuss any issues related to this package refer to the comments section on +the AUR page of gtsam here.

+ +
+
+
+
+

Write your first GTSAM program

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/KeyConcepts.html b/docs/build/html/KeyConcepts.html new file mode 100644 index 0000000000..a301b77d06 --- /dev/null +++ b/docs/build/html/KeyConcepts.html @@ -0,0 +1,138 @@ + + + + + + + Key Concepts — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Key Concepts

+
+

Bayesian inference using Factor graphs

+
+
+

The Maximum-a-Posteriori Problem

+
+
+

Full smoothing problem

+
+
+

Fixed lag smoothing problem

+
+
+

Filtering problem

+
+
+

IMU Preintegration Factors

+
+
+

Solvers

+
+
+

Bayes tree

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/LandmarkBasedSLAM.html b/docs/build/html/LandmarkBasedSLAM.html new file mode 100644 index 0000000000..74ca0d570f --- /dev/null +++ b/docs/build/html/LandmarkBasedSLAM.html @@ -0,0 +1,250 @@ + + + + + + + Landmark-based SLAM — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Landmark-based SLAM

+
+

Basics

+

|image: 12\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph4.png| +Figure 10: Factor graph for landmark-based SLAM

+

In landmark-based SLAM, we explicitly build a map with the location +of observed landmarks, which introduces a second type of variable in the +factor graph besides robot poses. An example factor graph for a +landmark-based SLAM example is shown in Figure 10, which +shows the typical connectivity: poses are connected in an odometry +Markov chain, and landmarks are observed from multiple poses, inducing +binary factors. In addition, the pose \(x_{1}\) has the usual prior +on it.

+

|image: 13\_Users\_dellaert\_git\_github\_doc\_images\_example2.png| +Figure 11: The optimized result along with covariance ellipses for both +poses (in green) and landmarks (in blue). Also shown are the trajectory +(red) and landmark sightings (cyan).

+

The factor graph from Figure 10 can be created using the +MATLAB code in Listing 5.1. As before, +on line 2 we create the factor graph, and Lines 8-18 create the +prior/odometry chain we are now familiar with. However, the code on +lines 20-25 is new: it creates three measurement factors, in this +case “bearing/range” measurements from the pose to the landmark.

+
% Create graph container and add factors to it
+graph = NonlinearFactorGraph;
+
+% Create keys for variables
+i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
+j1 = symbol('l',1); j2 = symbol('l',2);
+
+% Add prior
+priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
+priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
+% add directly to graph
+graph.add(PriorFactorPose2(i1, priorMean, priorNoise));
+
+% Add odometry
+odometry = Pose2(2.0, 0.0, 0.0);
+odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
+graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
+graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
+
+% Add bearing/range measurement factors
+degrees = pi/180;
+brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
+graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(8), brNoise));
+graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
+graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
+
+
+
+
+

Of Keys and Symbols

+

The only unexplained code is on lines 4-6: here we create integer keys +for the poses and landmarks using the *symbol* function. In GTSAM, +we address all variables using the *Ke*y type, which is just a +typedef to *size_t* a 32 or 64 bit integer, +depending on your platform. The keys do not have to be numbered continuously, but they do have to +be unique within a given factor graph. For factor graphs with different +types of variables, we provide the *symbol* function in MATLAB, and +the *Symbol* type in C++, to help you create (large) integer keys +that are far apart in the space of possible keys, so you don’t have to +think about starting the point numbering at some arbitrary offset. To +create a a symbol key you simply provide a character and an integer +index. You can use base 0 or 1, or use arbitrary indices: it does not +matter. In the code above, we we use ‘x’ for poses, and ‘l’ for +landmarks.

+

The optimized result for the factor graph created by Listing +5.1 is shown in Figure +11, and it is readily apparent that the +landmark \(l_{1}\) with two measurements is better localized. In +MATLAB we can also examine the actual numerical values, and doing so +reveals some more GTSAM magic:

+

>> result Values with 5 values: l1: (2, 2) l2: (4, 2) x1: (-1.8e-16, +5.1e-17, -1.5e-17) x2: (2, -5.8e-16, -4.6e-16) x3: (4, -3.1e-15, +-4.6e-16)

+

Indeed, the keys generated by symbol are automatically detected by the +*print* method in the *Values* class, and rendered in +human-readable form “x1”, “l2”, etc, rather than as large, unwieldy +integers. This magic extends to most factors and other classes where the +Key type is used.

+
+
+

A Larger Example

+

|image: 14\_Users\_dellaert\_git\_github\_doc\_images\_littleRobot.png| +Figure 12: A larger example with about 100 poses and 30 or so landmarks, +as produced by gtsam_examples/PlanarSLAMExample_graph.m

+

GTSAM comes with a slightly larger example that is read from a .graph +file by PlanarSLAMExample_graph.m, shown in Figure +12. To not clutter the figure only the marginals +are shown, not the lines of sight. This example, with 119 (multivariate) +variables and 517 factors optimizes in less than 10 ms.

+
+
+

A Real-World Example

+

|image: 15\_Users\_dellaert\_git\_github\_doc\_images\_Victoria.png| +Figure 13: Small section of optimized trajectory and landmarks (trees +detected in a laser range finder scan) from data recorded in Sydney’s +Victoria Park (dataset due to Jose Guivant, U. Sydney).

+

A real-world example is shown in Figure 13, using +data from a well known dataset collected in Sydney’s Victoria Park, +using a truck equipped with a laser range-finder. The covariance +matrices in this figure were computed very efficiently, as explained in +detail in (Kaess and Dellaert, 2009). The +exact covariances (blue, smaller ellipses) obtained by our fast +algorithm coincide with the exact covariances based on full inversion +(orange, mostly hidden by blue). The much larger conservative covariance +estimates (green, large ellipses) were based on our earlier work in +(Kaess et al., 2008).

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/MatlabExamples.html b/docs/build/html/MatlabExamples.html new file mode 100644 index 0000000000..e545966218 --- /dev/null +++ b/docs/build/html/MatlabExamples.html @@ -0,0 +1,135 @@ + + + + + + + Matlab Examples — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Matlab Examples

+

(Some selected examples from source code.)

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/ModelingRobotMotion.html b/docs/build/html/ModelingRobotMotion.html new file mode 100644 index 0000000000..6542db7d93 --- /dev/null +++ b/docs/build/html/ModelingRobotMotion.html @@ -0,0 +1,338 @@ + + + + + + + Modeling Robot Motion — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Modeling Robot Motion

+
+

Modeling with Factor Graphs

+

Before diving into a SLAM example, let us consider the simpler problem +of modeling robot motion. This can be done with a continuous Markov +chain, and provides a gentle introduction to GTSAM.

+

|image: 4\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph.png| +Figure 3: Factor graph for robot localization.

+

The factor graph for a simple example is shown in Figure +3. There are three variables \(x_{1}\), +\(x_{2}\), and \(x_{3}\) which represent the poses of the robot +over time, rendered in the figure by the open-circle variable nodes. In +this example, we have one unary factor +\(f_{0}\left( x_{1} \right)\) on the first pose \(x_{1}\) that +encodes our prior knowledge about \(x_{1}\), and two binary +factors that relate successive poses, respectively +\(f_{1}\left( {x_{1},x_{2};o_{1}} \right)\) and +\(f_{2}\left( {x_{2},x_{3};o_{2}} \right)\), where \(o_{1}\) and +\(o_{2}\) represent odometry measurements.

+
+
+

Creating a Factor Graph

+

The following C++ code, included in GTSAM as an example, creates the +factor graph in Figure 3:

+
// Create an empty nonlinear factor graph
+NonlinearFactorGraph graph;
+
+// Add a Gaussian prior on pose x_1
+Pose2 priorMean(0.0, 0.0, 0.0);
+noiseModel::Diagonal::shared_ptr priorNoise =
+  noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
+graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
+
+// Add two odometry factors
+Pose2 odometry(2.0, 0.0, 0.0);
+noiseModel::Diagonal::shared_ptr odometryNoise =
+  noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
+graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
+graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
+
+
+

Above, line 2 creates an empty factor graph. We then add the factor +\(f_{0}\left( x_{1} \right)\) on lines 5-8 as an instance of +*PriorFactor<T>*, a templated class provided in the slam subfolder, +with *T=Pose2*. Its constructor takes a variable *Key* (in this +case 1), a mean of type *Pose2,* created on Line 5, and a noise +model for the prior density. We provide a diagonal Gaussian of type +*noiseModel::Diagonal* by specifying three standard deviations in +line 7, respectively 30 cm. on the robot’s position, and 0.1 radians on +the robot’s orientation. Note that the *Sigmas* constructor returns +a shared pointer, anticipating that typically the same noise models are +used for many different factors.

+

Similarly, odometry measurements are specified as *Pose2* on line +11, with a slightly different noise model defined on line 12-13. We then +add the two factors \(f_{1}\left( {x_{1},x_{2};o_{1}} \right)\) and +\(f_{2}\left( {x_{2},x_{3};o_{2}} \right)\) on lines 14-15, as +instances of yet another templated class, *BetweenFactor<T>*, again +with *T=Pose2*.

+

When running the example (make OdometryExample.run on the command +prompt), it will print out the factor graph as follows:

+
Factor Graph:
+size: 3
+Factor 0: PriorFactor on 1
+  prior mean: (0, 0, 0)
+  noise model: diagonal sigmas [0.3; 0.3; 0.1];
+Factor 1: BetweenFactor(1,2)
+  measured: (2, 0, 0)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+Factor 2: BetweenFactor(2,3)
+  measured: (2, 0, 0)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+
+
+
+
+

Factor Graphs versus Values

+

At this point it is instructive to emphasize two important design ideas +underlying GTSAM:

+
    +
  1. The factor graph and its embodiment in code specify the joint +probability distribution \(P\left( X \middle| Z \right)\) over +the entire trajectory +\(X = \left\{ {x_{1},x_{2},x_{3}} \right\}\) of the robot, rather +than just the last pose. This smoothing view of the world gives +GTSAM its name: “smoothing and mapping”. Later in this document we +will talk about how we can also use GTSAM to do filtering (which you +often do not want to do) or incremental inference (which we do all +the time).

  2. +
  3. A factor graph in GTSAM is just the specification of the probability +density \(P\left( X \middle| Z \right)\), and the corresponding +*FactorGraph* class and its derived classes do not ever contain a +“solution”. Rather, there is a separate type *Values* that is +used to specify specific values for (in this case) \(x_{1}\), +\(x_{2}\), and \(x_{3}\), which can then be used to evaluate +the probability (or, more commonly, the error) associated with +particular values.

  4. +
+

The latter point is often a point of confusion with beginning users of +GTSAM. It helps to remember that when designing GTSAM we took a +functional approach of classes corresponding to mathematical objects, +which are usually immutable. You should think of a factor graph as a +function to be applied to values -as the notation +\(f\left( X \right) \propto P\left( X \middle| Z \right)\) implies- +rather than as an object to be modified.

+
+
+

Non-linear Optimization in GTSAM

+

The listing below creates a *Values* instance, and uses it as the +initial estimate to find the maximum a-posteriori (MAP) assignment for +the trajectory \(X\):

+
// create (deliberately inaccurate) initial estimate
+Values initial;
+initial.insert(1, Pose2(0.5, 0.0, 0.2));
+initial.insert(2, Pose2(2.3, 0.1, -0.2));
+initial.insert(3, Pose2(4.1, 0.1, 0.1));
+
+// optimize using Levenberg-Marquardt optimization
+Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
+
+
+

Lines 2-5 in Listing 2.4 create the +initial estimate, and on line 8 we create a non-linear +Levenberg-Marquardt style optimizer, and call *optimize* using +default parameter settings. The reason why GTSAM needs to perform +non-linear optimization is because the odometry factors +\(f_{1}\left( {x_{1},x_{2};o_{1}} \right)\) and +\(f_{2}\left( {x_{2},x_{3};o_{2}} \right)\) are non-linear, as they +involve the orientation of the robot. This also explains why the factor +graph we created in Listing 2.2 is of +type *NonlinearFactorGraph*. The optimization class linearizes this +graph, possibly multiple times, to minimize the non-linear squared error +specified by the factors.

+

The relevant output from running the example is as follows:

+
Initial Estimate:
+Values with 3 values:
+Value 1: (0.5, 0, 0.2)
+Value 2: (2.3, 0.1, -0.2)
+Value 3: (4.1, 0.1, 0.1)
+
+Final Result:
+Values with 3 values:
+Value 1: (-1.8e-16, 8.7e-18, -9.1e-19)
+Value 2: (2, 7.4e-18, -2.5e-18)
+Value 3: (4, -1.8e-18, -3.1e-18)
+
+
+

It can be seen that, subject to very small tolerance, the ground truth +solution \(x_{1} = \left( {0,0,0} \right)\), +\(x_{2} = \left( {2,0,0} \right)\), and +\(x_{3} = \left( {4,0,0} \right)\) is recovered.

+
+
+

Full Posterior Inference

+

GTSAM can also be used to calculate the covariance matrix for each pose +after incorporating the information from all measurements \(Z\). +Recognizing that the factor graph encodes the posterior density +\(P\left( X \middle| Z \right)\), the mean \(\mu\) together with +the covariance \(\Sigma\) for each pose \(x\) approximate the +marginal posterior density \(P\left( x \middle| Z \right)\). +Note that this is just an approximation, as even in this simple case the +odometry factors are actually non-linear in their arguments, and GTSAM +only computes a Gaussian approximation to the true underlying posterior.

+

The following C++ code will recover the posterior marginals:

+
// Query the marginals
+cout.precision(2);
+Marginals marginals(graph, result);
+cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
+cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
+cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
+
+
+

The relevant output from running the example is as follows:

+
x1 covariance:
+       0.09     1.1e-47     5.7e-33
+    1.1e-47        0.09     1.9e-17
+    5.7e-33     1.9e-17        0.01
+x2 covariance:
+       0.13     4.7e-18     2.4e-18
+    4.7e-18        0.17        0.02
+    2.4e-18        0.02        0.02
+x3 covariance:
+       0.17     2.7e-17     8.4e-18
+    2.7e-17        0.37        0.06
+    8.4e-18        0.06        0.03
+
+
+

What we see is that the marginal covariance +\(P\left( x_{1} \middle| Z \right)\) on \(x_{1}\) is simply the +prior knowledge on \(x_{1}\), but as the robot moves the uncertainty +in all dimensions grows without bound, and the \(y\) and +\(\theta\) components of the pose become (positively) correlated.

+

An important fact to note when interpreting these numbers is that +covariance matrices are given in relative coordinates, not absolute +coordinates. This is because internally GTSAM optimizes for a change +with respect to a linearization point, as do all nonlinear optimization +libraries.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/MoreApplications.html b/docs/build/html/MoreApplications.html new file mode 100644 index 0000000000..377adceb73 --- /dev/null +++ b/docs/build/html/MoreApplications.html @@ -0,0 +1,206 @@ + + + + + + + More Applications — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

More Applications

+

While a detailed discussion of all the things you can do with GTSAM will +take us too far, below is a small survey of what you can expect to do, +and which we did using GTSAM.

+
+

Conjugate Gradient Optimization

+

|image: 17\_Users\_dellaert\_git\_github\_doc\_images\_Beijing.png| +Figure 15: A map of Beijing, with a spanning tree shown in black, and +the remaining loop-closing constraints shown in red. A spanning tree +can be used as a preconditioner by GTSAM.

+

GTSAM also includes efficient preconditioned conjugate gradients (PCG) +methods for solving large-scale SLAM problems. While direct methods, +popular in the literature, exhibit quadratic convergence and can be +quite efficient for sparse problems, they typically require a lot of +storage and efficient elimination orderings to be found. In contrast, +iterative optimization methods only require access to the gradient and +have a small memory footprint, but can suffer from poor convergence. Our +method, subgraph preconditioning, explained in detail in Dellaert et +al. (2010); Jian et +al. (2011), combines the advantages of direct +and iterative methods, by identifying a sub-problem that can be easily +solved using direct methods, and solving for the remaining part using +PCG. The easy sub-problems correspond to a spanning tree, a planar +subgraph, or any other substructure that can be efficiently solved. An +example of such a subgraph is shown in Figure 15.

+
+
+

Visual Odometry

+

A gentle introduction to vision-based sensing is Visual Odometry +(abbreviated VO, see e.g. Nistér et al. +(2004)), which provides pose constraints between successive robot poses +by tracking or associating visual features in successive images taken by +a camera mounted rigidly on the robot. GTSAM includes both C++ and +MATLAB example code, as well as VO-specific factors to help you on the +way.

+
+
+

Visual SLAM

+

Visual SLAM (see e.g., Davison (2003)) +is a SLAM variant where 3D points are observed by a camera as the camera +moves through space, either mounted on a robot or moved around by hand. +GTSAM, and particularly iSAM (see below), can easily be adapted to be +used as the back-end optimizer in such a scenario.

+
+
+

Fixed-lag Smoothing and Filtering

+

GTSAM can easily perform recursive estimation, where only a subset of +the poses are kept in the factor graph, while the remaining poses are +marginalized out. In all examples above we explicitly optimize for all +variables using all available measurements, which is called +Smoothing because the trajectory is “smoothed” out, and this is +where GTSAM got its name (GT Smoothing and Mapping). When instead only +the last few poses are kept in the graph, one speaks of Fixed-lag +Smoothing. Finally, when only the single most recent poses is kept, +one speaks of Filtering, and indeed the original formulation of SLAM +was filter-based (Smith et al., 1988).

+
+
+

Discrete Variables and HMMs

+

Finally, factor graphs are not limited to continuous variables: GTSAM +can also be used to model and solve discrete optimization problems. For +example, a Hidden Markov Model (HMM) has the same graphical model +structure as the Robot Localization problem from Section +2, except that in an HMM the variables are +discrete. GTSAM can optimize and perform inference for discrete models.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/Overview.html b/docs/build/html/Overview.html new file mode 100644 index 0000000000..d5cdcd6f53 --- /dev/null +++ b/docs/build/html/Overview.html @@ -0,0 +1,176 @@ + + + + + + + Overview — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Overview

+

Factor graphs are graphical models (Koller and Friedman, +2009) that are well suited to modeling +complex estimation problems, such as Simultaneous Localization and +Mapping (SLAM) or Structure from Motion (SFM). You might be familiar +with another often used graphical model, Bayes networks, which are +directed acyclic graphs. A factor graph, however, is a bipartite +graph consisting of factors connected to variables. The variables +represent the unknown random variables in the estimation problem, +whereas the factors represent probabilistic constraints on those +variables, derived from measurements or prior knowledge. In the +following sections I will illustrate this with examples from both +robotics and vision.

+

The GTSAM toolbox (GTSAM stands for “Georgia Tech Smoothing and +Mapping”) toolbox is a BSD-licensed C++ library based on factor graphs, +developed at the Georgia Institute of Technology by myself, many of my +students, and collaborators. It provides state of the art solutions to +the SLAM and SFM problems, but can also be used to model and solve both +simpler and more complex estimation problems. It also provides a MATLAB +interface which allows for rapid prototype development, visualization, +and user interaction.

+

GTSAM exploits sparsity to be computationally efficient. Typically +measurements only provide information on the relationship between a +handful of variables, and hence the resulting factor graph will be +sparsely connected. This is exploited by the algorithms implemented in +GTSAM to reduce computational complexity. Even when graphs are too dense +to be handled efficiently by direct methods, GTSAM provides iterative +methods that are quite efficient regardless.

+

You can download the latest version of GTSAM from our Github +repo.

+
+

Acknowledgements

+

GTSAM was made possible by the efforts of many collaborators at Georgia +Tech and elsewhere, including but not limited to Doru Balcan, Chris +Beall, Alex Cunningham, Alireza Fathi, Eohan George, Viorela Ila, +Yong-Dian Jian, Michael Kaess, Kai Ni, Carlos Nieto, Duy-Nguyen Ta, +Manohar Paluri, Christian Potthast, Richard Roberts, Grant Schindler, +and Stephen Williams. In addition, Paritosh Mohan helped me with the +manual. Many thanks all for your hard work!

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/PoseSLAM.html b/docs/build/html/PoseSLAM.html new file mode 100644 index 0000000000..cb282b72bd --- /dev/null +++ b/docs/build/html/PoseSLAM.html @@ -0,0 +1,349 @@ + + + + + + + PoseSLAM — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

PoseSLAM

+
+

Loop Closure Constraints

+

The simplest instantiation of a SLAM problem is PoseSLAM, which +avoids building an explicit map of the environment. The goal of SLAM is +to simultaneously localize a robot and map the environment given +incoming sensor measurements (Durrant-Whyte and Bailey, +2006). Besides wheel odometry, one of +the most popular sensors for robots moving on a plane is a 2D +laser-range finder, which provides both odometry constraints between +successive poses, and loop-closure constraints when the robot re-visits +a previously explored part of the environment.

+

|image: 8\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph3.png| +Figure 6: Factor graph for PoseSLAM.

+

A factor graph example for PoseSLAM is shown in Figure +6. The following C++ code, included in GTSAM as an +example, creates this factor graph in code:

+
NonlinearFactorGraph graph;
+noiseModel::Diagonal::shared_ptr priorNoise =
+  noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
+graph.add(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
+
+// Add odometry factors
+noiseModel::Diagonal::shared_ptr model =
+  noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
+graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0     ), model));
+graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
+graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
+graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
+
+// Add the loop closure constraint
+graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
+
+
+

As before, lines 1-4 create a nonlinear factor graph and add the unary +factor \(f_{0}\left( x_{1} \right)\). As the robot travels through +the world, it creates binary factors +\(f_{t}\left( {x_{t},x_{t + 1}} \right)\) corresponding to odometry, +added to the graph in lines 6-12 (Note that M_PI_2 refers to pi/2). +But line 15 models a different event: a loop closure. For example, +the robot might recognize the same location using vision or a laser +range finder, and calculate the geometric pose constraint to when it +first visited this location. This is illustrated for poses \(x_{5}\) +and \(x_{2}\), and generates the (red) loop closing factor +\(f_{5}\left( {x_{5},x_{2}} \right)\).

+

|image: 9\_Users\_dellaert\_git\_github\_doc\_images\_example1.png| +Figure 7: The result of running optimize on the factor graph in Figure +6.

+

We can optimize this factor graph as before, by creating an initial +estimate of type *Values*, and creating and running an optimizer. +The result is shown graphically in Figure 7, along +with covariance ellipses shown in green. These covariance ellipses in 2D +indicate the marginal over position, over all possible orientations, and +show the area which contain 68.26% of the probability mass (in 1D this +would correspond to one standard deviation). The graph shows in a clear +manner that the uncertainty on pose \(x_{5}\) is now much less than +if there would be only odometry measurements. The pose with the highest +uncertainty, \(x_{4}\), is the one furthest away from the unary +constraint \(f_{0}\left( x_{1} \right)\), which is the only factor +tying the graph to a global coordinate frame.

+

The figure above was created using an interface that allows you to use +GTSAM from within MATLAB, which provides for visualization and rapid +development. We discuss this next.

+
+
+

Using the MATLAB Interface

+

A large subset of the GTSAM functionality can be accessed through +wrapped classes from within MATLAB +(GTSAM also allows you to wrap your own custom-made classes, although +this is outside the scope of this manual). +The following code excerpt is the MATLAB equivalent of the C++ code in +Listing 4.1:

+
graph = NonlinearFactorGraph;
+priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
+graph.add(PriorFactorPose2(1, Pose2(0, 0, 0), priorNoise));
+
+%% Add odometry factors
+model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
+graph.add(BetweenFactorPose2(1, 2, Pose2(2, 0, 0   ), model));
+graph.add(BetweenFactorPose2(2, 3, Pose2(2, 0, pi/2), model));
+graph.add(BetweenFactorPose2(3, 4, Pose2(2, 0, pi/2), model));
+graph.add(BetweenFactorPose2(4, 5, Pose2(2, 0, pi/2), model));
+
+%% Add pose constraint
+graph.add(BetweenFactorPose2(5, 2, Pose2(2, 0, pi/2), model));
+
+
+

Note that the code is almost identical, although there are a few syntax +and naming differences:

+
    +
  • Objects are created by calling a constructor instead of allocating +them on the heap.

  • +
  • Namespaces are done using dot notation, i.e., +*noiseModel::Diagonal::SigmasClasses* becomes +*noiseModel.Diagonal.Sigmas*.

  • +
  • *Vector* and *Matrix* classes in C++ are just +vectors/matrices in MATLAB.

  • +
  • As templated classes do not exist in MATLAB, these have been +hardcoded in the GTSAM interface, e.g., *PriorFactorPose2* +corresponds to the C++ class *PriorFactor<Pose2>*, etc.

  • +
+

After executing the code, you can call whos on the MATLAB command +prompt to see the objects created. Note that the indicated Class +corresponds to the wrapped C++ classes:

+
>> whos
+  Name                 Size            Bytes  Class
+  graph                1x1               112  gtsam.NonlinearFactorGraph
+  priorNoise           1x1               112  gtsam.noiseModel.Diagonal
+  model                1x1               112  gtsam.noiseModel.Diagonal
+  initialEstimate      1x1               112  gtsam.Values
+  optimizer            1x1               112  gtsam.LevenbergMarquardtOptimizer
+
+
+

In addition, any GTSAM object can be examined in detail, yielding +identical output to C++:

+
>> priorNoise
+diagonal sigmas [0.3; 0.3; 0.1];
+
+>> graph
+size: 6
+factor 0: PriorFactor on 1
+  prior mean: (0, 0, 0)
+  noise model: diagonal sigmas [0.3; 0.3; 0.1];
+factor 1: BetweenFactor(1,2)
+  measured: (2, 0, 0)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+factor 2: BetweenFactor(2,3)
+  measured: (2, 0, 1.6)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+factor 3: BetweenFactor(3,4)
+  measured: (2, 0, 1.6)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+factor 4: BetweenFactor(4,5)
+  measured: (2, 0, 1.6)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+factor 5: BetweenFactor(5,2)
+  measured: (2, 0, 1.6)
+  noise model: diagonal sigmas [0.2; 0.2; 0.1];
+
+
+

And it does not stop there: we can also call some of the functions +defined for factor graphs. E.g.,

+
>> graph.error(initialEstimate)
+ans =
+   20.1086
+
+>> graph.error(result)
+ans =
+   8.2631e-18
+
+
+

computes the sum-squared error +\(\frac{1}{2}\sum\limits_{i}{||h_{i}\left( X_{i} \right) - z_{i}||}_{\Sigma}^{2}{}\) +before and after optimization.

+
+
+

Reading and Optimizing Pose Graphs

+

|image: 10\_Users\_dellaert\_git\_github\_doc\_images\_w100-result.png| +Figure 8: MATLAB plot of small Manhattan world example with 100 poses +(due to Ed Olson). The initial estimate is shown in green. The optimized +trajectory, with covariance ellipses, in blue.

+

The ability to work in MATLAB adds a much quicker development cycle, and +effortless graphical output. The optimized trajectory in Figure +8 was produced by the code below, in which load2D +reads TORO files. To see how plotting is done, refer to the full source +code.

+
%% Initialize graph, initial estimate, and odometry noise
+datafile = findExampleDataFile('w100.graph');
+model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
+[graph,initial] = load2D(datafile, model);
+
+%% Add a Gaussian prior on pose x_0
+priorMean = Pose2(0, 0, 0);
+priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
+graph.add(PriorFactorPose2(0, priorMean, priorNoise));
+
+%% Optimize using Levenberg-Marquardt optimization and get marginals
+optimizer = LevenbergMarquardtOptimizer(graph, initial);
+result = optimizer.optimizeSafely;
+marginals = Marginals(graph, result);
+
+
+
+
+

PoseSLAM in 3D

+

PoseSLAM can easily be extended to 3D poses, but some care is needed to +update 3D rotations. GTSAM supports both quaternions and +\(3 \times 3\) rotation matrices to represent 3D rotations. The +selection is made via the compile flag GTSAM_USE_QUATERNIONS.

+

|image: +11\_Users\_dellaert\_git\_github\_doc\_images\_sphere2500-result.png| +Figure 9: 3D plot of sphere example (due to Michael Kaess). The very +wrong initial estimate, derived from odometry, is shown in green. The +optimized trajectory is shown red. Code below:

+
%% Initialize graph, initial estimate, and odometry noise
+datafile = findExampleDataFile('sphere2500.txt');
+model = noiseModel.Diagonal.Sigmas([5*pi/180; 5*pi/180; 5*pi/180; 0.05; 0.05; 0.05]);
+[graph,initial] = load3D(datafile, model, true, 2500);
+plot3DTrajectory(initial, 'g-', false); % Plot Initial Estimate
+
+%% Read again, now with all constraints, and optimize
+graph = load3D(datafile, model, false, 2500);
+graph.add(NonlinearEqualityPose3(0, initial.atPose3(0)));
+optimizer = LevenbergMarquardtOptimizer(graph, initial);
+result = optimizer.optimizeSafely();
+plot3DTrajectory(result, 'r-', false); axis equal;
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/PythonExamples.html b/docs/build/html/PythonExamples.html new file mode 100644 index 0000000000..e5012c5502 --- /dev/null +++ b/docs/build/html/PythonExamples.html @@ -0,0 +1,135 @@ + + + + + + + Python Examples — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Python Examples

+

(Some selected examples from source code.)

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/RobotLocalization.html b/docs/build/html/RobotLocalization.html new file mode 100644 index 0000000000..e5a0adc8c4 --- /dev/null +++ b/docs/build/html/RobotLocalization.html @@ -0,0 +1,314 @@ + + + + + + + Robot Localization — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Robot Localization

+
+

Unary Measurement Factors

+

In this section we add measurements to the factor graph that will help +us actually localize the robot over time. The example also serves as a +tutorial on creating new factor types.

+

|image: 5\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph2.png| +Figure 4: Robot localization factor graph with unary measurement factors +at each time step.

+

In particular, we use unary measurement factors to handle external +measurements. The example from Section 2 +is not very useful on a real robot, because it only contains factors +corresponding to odometry measurements. These are imperfect and will +lead to quickly accumulating uncertainty on the last robot pose, at +least in the absence of any external measurements (see Section +2.5). Figure +4 shows a new factor graph where the prior +\(f_{0}\left( x_{1} \right)\) is omitted and instead we added three +unary factors \(f_{1}\left( {x_{1};z_{1}} \right)\), +\(f_{2}\left( {x_{2};z_{2}} \right)\), and +\(f_{3}\left( {x_{3};z_{3}} \right)\), one for each localization +measurement \(z_{t}\), respectively. Such unary factors are +applicable for measurements \(z_{t}\) that depend only on the +current robot pose, e.g., GPS readings, correlation of a laser +range-finder in a pre-existing map, or indeed the presence of absence of +ceiling lights (see Dellaert et al. (1999) +for that amusing example).

+
+
+

Defining Custom Factors

+

In GTSAM, you can create custom unary factors by deriving a new class +from the built-in class *NoiseModelFactor1<T>*, which implements a +unary factor corresponding to a measurement likelihood with a Gaussian +noise model, +\(L\left( q;m \right)\operatorname{=\ exp}\left\{ - \frac{1}{2}{||h\left( q \right) - m||}_{\Sigma}^{2} \right\} = f\left( q \right)\) +where \(m\) is the measurement, \(q\) is the unknown variable, +\(h\left( q \right)\) is a (possibly nonlinear) measurement +function, and \(\Sigma\) is the noise covariance. Note that +\(m\) is considered known above, and the likelihood +\(L\left( {q;m} \right)\) will only ever be evaluated as a function +of \(q\), which explains why it is a unary factor +\(f\left( q \right)\). It is always the unknown variable \(q\) +that is either likely or unlikely, given the measurement.

+

Note: many people get this backwards, often misled by the +conditional density notation \(P\left( m \middle| q \right)\). In +fact, the likelihood \(L\left( {q;m} \right)\) is defined as any +function of \(q\) proportional to +\(P\left( m \middle| q \right)\).

+

Listing 3.2 shows an example on how to +define the custom factor class *UnaryFactor* which implements a +“GPS-like” measurement likelihood:

+
class UnaryFactor: public NoiseModelFactor1<Pose2> {
+  double mx_, my_; ///< X and Y measurements
+
+public:
+  UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
+    NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {}
+
+  Vector evaluateError(const Pose2& q,
+                       boost::optional<Matrix&> H = boost::none) const
+  {
+    if (H) (*H) = (Matrix(2,3)<< 1.0,0.0,0.0, 0.0,1.0,0.0).finished();
+    return (Vector(2) << q.x() - mx_, q.y() - my_).finished();
+  }
+};
+
+
+

In defining the derived class on line 1, we provide the template +argument *Pose2* to indicate the type of the variable \(q\), +whereas the measurement is stored as the instance variables *mx_* +and *my_*, defined on line 2. The constructor on lines 5-6 simply +passes on the variable key \(j\) and the noise model to the +superclass, and stores the measurement values provided. The most +important function to has be implemented by every factor class is +*evaluateError*, which should return +\(E\left( q \right) = {h\left( q \right) - m}\) which is done on +line 12. Importantly, because we want to use this factor for nonlinear +optimization (see e.g., Dellaert and Kaess +2006 for details), whenever the optional +argument \(H\) is provided, a *Matrix* reference, the function +should assign the Jacobian of \(h\left( q \right)\) to it, +evaluated at the provided value for \(q\). This is done for this +example on line 11. In this case, the Jacobian of the 2-dimensional +function \(h\), which just returns the position of the robot,

+
+\[\begin{split}h\left( q \right) = \left\lbrack \begin{array}{l} +q_{x} \\ +q_{y} \\ +\end{array} \right\rbrack\end{split}\]
+

with respect the 3-dimensional pose +\(q = \left( {q_{x},q_{y},q_{\theta}} \right)\), yields the +following simple \(2 \times 3\) matrix:

+
+\[\begin{split}H = \left\lbrack \begin{array}{lll} +1 & 0 & 0 \\ +0 & 1 & 0 \\ +\end{array} \right\rbrack\end{split}\]
+
+
+

Using Custom Factors

+

The following C++ code fragment illustrates how to create and add custom +factors to a factor graph:

+
// add unary measurement factors, like GPS, on all three poses
+noiseModel::Diagonal::shared_ptr unaryNoise =
+ noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
+graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
+graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
+graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
+
+
+

In Listing 3.3, we create the noise +model on line 2-3, which now specifies two standard deviations on the +measurements \(m_{x}\) and \(m_{y}\). On lines 4-6 we create +*shared_ptr* versions of three newly created *UnaryFactor* +instances, and add them to graph. GTSAM uses shared pointers to refer to +factors in factor graphs, and *boost::make_shared* is a convenience +function to simultaneously construct a class and create a +*shared_ptr* to it. We obtain the factor graph from Figure +4.

+
+
+

Full Posterior Inference

+

The three GPS factors are enough to fully constrain all unknown poses +and tie them to a “global” reference frame, including the three unknown +orientations. If not, GTSAM would have exited with a singular matrix +exception. The marginals can be recovered exactly as in Section +2.5, and the solution and +marginal covariances are now given by the following:

+
Final Result:
+Values with 3 values:
+Value 1: (-1.5e-14, 1.3e-15, -1.4e-16)
+Value 2: (2, 3.1e-16, -8.5e-17)
+Value 3: (4, -6e-16, -8.2e-17)
+
+x1 covariance:
+      0.0083      4.3e-19     -1.1e-18
+     4.3e-19       0.0094      -0.0031
+    -1.1e-18      -0.0031       0.0082
+x2 covariance:
+      0.0071      2.5e-19     -3.4e-19
+     2.5e-19       0.0078      -0.0011
+    -3.4e-19      -0.0011       0.0082
+x3 covariance:
+     0.0083     4.4e-19     1.2e-18
+    4.4e-19      0.0094      0.0031
+    1.2e-18      0.0031       0.018
+
+
+

Comparing this with the covariance matrices in Section +2.5, we can see that the +uncertainty no longer grows without bounds as measurement uncertainty +accumulates. Instead, the “GPS” measurements more or less constrain the +poses evenly, as expected.

+

|image: 6\_Users\_dellaert\_git\_github\_doc\_images\_Odometry.png|

+

Sub-Figure a: Odometry marginals

+

Figure 5: Comparing the marginals resulting from the “odometry” factor +graph in Figure 3 and the “localization” factor +graph in Figure 4.

+

|image: 7\_Users\_dellaert\_git\_github\_doc\_images\_Localization.png|

+

Sub-Figure b: Localization Marginals

+

It helps a lot when we view this graphically, as in Figure +5, where I show the marginals on position as +covariance ellipses that contain 68.26% of all probability mass. For the +odometry marginals, it is immediately apparent from the figure that (1) +the uncertainty on pose keeps growing, and (2) the uncertainty on +angular odometry translates into increasing uncertainty on y. The +localization marginals, in contrast, are constrained by the unary +factors and are all much smaller. In addition, while less apparent, the +uncertainty on the middle pose is actually smaller as it is constrained +by odometry from two sides.

+

You might now be wondering how we produced these figures. The answer is +via the MATLAB interface of GTSAM, which we will demonstrate in the next +section.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/StructureFromMotion.html b/docs/build/html/StructureFromMotion.html new file mode 100644 index 0000000000..77d0cb5d5e --- /dev/null +++ b/docs/build/html/StructureFromMotion.html @@ -0,0 +1,185 @@ + + + + + + + Structure from Motion — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Structure from Motion

+

|image: 16\_Users\_dellaert\_git\_github\_doc\_images\_cube.png| Figure +14: An optimized “Structure from Motion” with 10 cameras arranged in a +circle, observing the 8 vertices of a \(20 \times 20 \times 20\) +cube centered around the origin. The camera is rendered with color-coded +axes, (RGB for XYZ) and the viewing direction is is along the positive +Z-axis. Also shown are the 3D error covariance ellipses for both cameras +and points.

+

Structure from Motion (SFM) is a technique to recover a 3D +reconstruction of the environment from corresponding visual features in +a collection of unordered images, see Figure 14. +In GTSAM this is done using exactly the same factor graph framework, +simply using SFM-specific measurement factors. In particular, there is a +projection factor that calculates the reprojection error +\(f\left( {x_{i},p_{j};z_{ij},K} \right)\) for a given camera pose +\(x_{i}\) (a *Pose3*) and point \(p_{j}\) (a *Point3*). +The factor is parameterized by the 2D measurement \(z_{ij}\) (a +*Point2*), and known calibration parameters \(K\) (of type +*Cal3_S2*). The following listing shows how to create the factor +graph:

+
%% Add factors for all measurements
+noise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
+for i = 1:length(Z),
+    for k = 1:length(Z{i})
+        j = J{i}{k};
+        G.add(GenericProjectionFactorCal3_S2(
+              Z{i}{k}, noise, symbol('x', i), symbol('p', j), K));
+    end
+end
+
+
+

In Listing 6, assuming that the factor graph +was already created, we add measurement factors in the double loop. We +loop over images with index \(i\), and in this example the data is +given as two cell arrays: Z{i} specifies a set of measurements +\(z_{k}\) in image \(i\), and J{i} specifies the corresponding +point index. The specific factor type we use is a +*GenericProjectionFactorCal3_S2*, which is the MATLAB equivalent of +the C++ class *GenericProjectionFactor<Cal3_S2>*, where +*Cal3_S2* is the camera calibration type we choose to use (the +standard, no-radial distortion, 5 parameter calibration matrix). As +before landmark-based SLAM (Section 5), +here we use symbol keys except we now use the character ‘p’ to denote +points, rather than ‘l’ for landmark.

+

Important note: a very tricky and difficult part of making SFM work is +(a) data association, and (b) initialization. GTSAM does neither of +these things for you: it simply provides the “bundle adjustment” +optimization. In the example, we simply assume the data association is +known (it is encoded in the J sets), and we initialize with the ground +truth, as the intent of the example is simply to show you how to set up +the optimization problem.

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/TutorialCreateNewFactor.html b/docs/build/html/TutorialCreateNewFactor.html new file mode 100644 index 0000000000..e635184493 --- /dev/null +++ b/docs/build/html/TutorialCreateNewFactor.html @@ -0,0 +1,138 @@ + + + + + + + Creating new factor and variable types — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Creating new factor and variable types

+

GTSAM comes with a set of variable and factor types typically used in SFM and +SLAM. Geometry variables such as points and poses are in the geometry +subdirectory and module. Factors such as BetweenFactor and BearingFactor are in +the gtsam/slam directory.

+

To use GTSAM to solve your own problems, you will often have to create new factor +types, which derive either from NonlinearFactor or NoiseModelFactor, or one of +their derived types. Here is an outline of the options:

+
    +
  • The number of variables your factor involves is <b>unknown</b> at compile time - derive from NoiseModelFactor and implement NoiseModelFactor::unwhitenedError()

    +
      +
    • This is a factor expressing the sum-of-squares error between a measurement f$ z f$ and a measurement prediction function f$ h(x) f$, on which the errors are expected to follow some distribution specified by a noise model (see noiseModel).

    • +
    +
  • +
  • The number of variables your factor involves is <b>known</b> at compile time and is between 1 and 6 - derive from NoiseModelFactor1, NoiseModelFactor2, NoiseModelFactor3, NoiseModelFactor4, NoiseModelFactor5, or NoiseModelFactor6, and implement <b>c evaluateError()</b>

    +
      +
    • This factor expresses the same sum-of-squares error with a noise model, but makes the implementation task slightly easier than with %NoiseModelFactor.

    • +
    +
  • +
  • Derive from NonlinearFactor

    +
      +
    • This is more advanced and allows creating factors without an explicit noise model, or that linearize to HessianFactor instead of JacobianFactor.

    • +
    +
  • +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/Tutorials.html b/docs/build/html/Tutorials.html new file mode 100644 index 0000000000..669bfc387a --- /dev/null +++ b/docs/build/html/Tutorials.html @@ -0,0 +1,197 @@ + + + + + + + Tutorials — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/_sources/Bindings.rst.txt b/docs/build/html/_sources/Bindings.rst.txt new file mode 100644 index 0000000000..ac14392557 --- /dev/null +++ b/docs/build/html/_sources/Bindings.rst.txt @@ -0,0 +1,18 @@ +Bindings +============= + + +GTSAM provides two native C++11 libraries ``gtsam`` and ``gtsam_unstable``. +Both are also wrapped into other languages for easy prototyping. + + +Python wrapper +-------------------- + +Write me! + + +Matlab wrapper +-------------------- + +Write me! diff --git a/docs/build/html/_sources/Building.rst.txt b/docs/build/html/_sources/Building.rst.txt new file mode 100644 index 0000000000..18ebcc2e8c --- /dev/null +++ b/docs/build/html/_sources/Building.rst.txt @@ -0,0 +1,4 @@ +Building +================ + +From: https://gtsam.org/build/ diff --git a/docs/build/html/_sources/CppExamples.rst.txt b/docs/build/html/_sources/CppExamples.rst.txt new file mode 100644 index 0000000000..97a68d7a7b --- /dev/null +++ b/docs/build/html/_sources/CppExamples.rst.txt @@ -0,0 +1,18 @@ +C++ Examples +============== + + +(Some selected examples from source code.) + + + +Kalman filter example +------------------------ + + +2D SLAM example +------------------ + + +3D SLAM example +------------------ diff --git a/docs/build/html/_sources/FactorGraphs.rst.txt b/docs/build/html/_sources/FactorGraphs.rst.txt new file mode 100644 index 0000000000..0a16042539 --- /dev/null +++ b/docs/build/html/_sources/FactorGraphs.rst.txt @@ -0,0 +1,50 @@ +Factor Graphs +--------------- + +Let us start with a one-page primer on factor graphs, which in no way +replaces the excellent and detailed reviews by `Kschischang et +al. <#LyXCite-Kschischang01it>`__ (2001) and +`Loeliger <#LyXCite-Loeliger04spm>`__ (2004). + + +|image: 2\_Users\_dellaert\_git\_github\_doc\_images\_hmm.png| Figure 1: +An HMM, unrolled over three time-steps, represented by a Bayes net. + +Figure `1 <#fig_unrolledHMM>`__ shows the **Bayes network** for a hidden +Markov model (HMM) over three time steps. In a Bayes net, each node is +associated with a conditional density: the top Markov chain encodes the +prior :math:`P\left( X_{1} \right)` and transition probabilities +:math:`P\left( X_{2} \middle| X_{1} \right)` and +:math:`P\left( X_{3} \middle| X_{2} \right)`, whereas measurements +:math:`Z_{t}` depend only on the state :math:`X_{t}`, modeled by +conditional densities :math:`P\left( Z_{t} \middle| X_{t} \right)`. +Given known measurements :math:`z_{1}`, :math:`z_{2}` and :math:`z_{3}` +we are interested in the hidden state sequence +:math:`\left( {X_{1},X_{2},X_{3}} \right)` that maximizes the posterior +probability +:math:`P\left( X_{1},X_{2},X_{3} \middle| Z_{1} = z_{1},Z_{2} = z_{2},Z_{3} = z_{3} \right)`. +Since the measurements :math:`Z_{1}`, :math:`Z_{2}`, and :math:`Z_{3}` +are *known*, the posterior is proportional to the product of six +**factors**, three of which derive from the the Markov chain, and three +likelihood factors defined as +:math:`L\left( {X_{t};z} \right) \propto P\left( Z_{t} = z \middle| X_{t} \right)`: + +.. math:: P\left( X_{1},X_{2},X_{3} \middle| Z_{1},Z_{2},Z_{3} \right) \propto P\left( X_{1} \right)P\left( X_{2} \middle| X_{1} \right)P\left( X_{3} \middle| X_{2} \right)L\left( {X_{1};z_{1}} \right)L\left( {X_{2};z_{2}} \right)L\left( {X_{3};z_{3}} \right) + +|image: 3\_Users\_dellaert\_git\_github\_doc\_images\_hmm-FG.png| Figure +2: An HMM with observed measurements, unrolled over time, represented as +a factor graph. + +This motivates a different graphical model, a **factor graph**, in which +we only represent the unknown variables :math:`X_{1}`, :math:`X_{2}`, +and :math:`X_{3}`, connected to factors that encode probabilistic +information on them, as in Figure `2 <#fig_HMM_FG>`__. To do maximum +a-posteriori (MAP) inference, we then maximize the product + +.. math:: f\left( {X_{1},X_{2},X_{3}} \right) = \prod f_{i}\left( \mathcal{X}_{i} \right) + +\ i.e., the value of the factor graph. It should be clear from the +figure that the connectivity of a factor graph encodes, for each factor +:math:`f_{i}`, which subset of variables :math:`\mathcal{X}_{i}` it +depends on. In the examples below, we use factor graphs to model more +complex MAP inference problems in robotics. diff --git a/docs/build/html/_sources/Installing.rst.txt b/docs/build/html/_sources/Installing.rst.txt new file mode 100644 index 0000000000..c1ee90679f --- /dev/null +++ b/docs/build/html/_sources/Installing.rst.txt @@ -0,0 +1,12 @@ +Installing +================ + +Getting started +------------------ + +Importing GTSAM in your projects +----------------------------------- + + +Write your first GTSAM program +--------------------------------- diff --git a/docs/build/html/_sources/KeyConcepts.rst.txt b/docs/build/html/_sources/KeyConcepts.rst.txt new file mode 100644 index 0000000000..e6c3c1e36a --- /dev/null +++ b/docs/build/html/_sources/KeyConcepts.rst.txt @@ -0,0 +1,27 @@ +Key Concepts +============ + + +Bayesian inference using Factor graphs +-------------------------------------- + +The Maximum-a-Posteriori Problem +-------------------------------- + +Full smoothing problem +---------------------- + +Fixed lag smoothing problem +--------------------------- + +Filtering problem +----------------- + +IMU Preintegration Factors +----------------------------- + +Solvers +----------- + +Bayes tree +------------- diff --git a/docs/build/html/_sources/LandmarkBasedSLAM.rst.txt b/docs/build/html/_sources/LandmarkBasedSLAM.rst.txt new file mode 100644 index 0000000000..3652fba446 --- /dev/null +++ b/docs/build/html/_sources/LandmarkBasedSLAM.rst.txt @@ -0,0 +1,124 @@ +Landmark-based SLAM +--------------------- + +Basics +~~~~~~~~~~ + +|image: 12\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph4.png| +Figure 10: Factor graph for landmark-based SLAM + +In **landmark-based SLAM**, we explicitly build a map with the location +of observed landmarks, which introduces a second type of variable in the +factor graph besides robot poses. An example factor graph for a +landmark-based SLAM example is shown in Figure `10 <#fig_SLAM>`__, which +shows the typical connectivity: poses are connected in an odometry +Markov chain, and landmarks are observed from multiple poses, inducing +binary factors. In addition, the pose :math:`x_{1}` has the usual prior +on it. + +|image: 13\_Users\_dellaert\_git\_github\_doc\_images\_example2.png| +Figure 11: The optimized result along with covariance ellipses for both +poses (in green) and landmarks (in blue). Also shown are the trajectory +(red) and landmark sightings (cyan). + +The factor graph from Figure `10 <#fig_SLAM>`__ can be created using the +MATLAB code in Listing `5.1 <#listing_PlanarSLAMExample>`__. As before, +on line 2 we create the factor graph, and Lines 8-18 create the +prior/odometry chain we are now familiar with. However, the code on +lines 20-25 is new: it creates three **measurement factors**, in this +case “bearing/range” measurements from the pose to the landmark. + +:: + + % Create graph container and add factors to it + graph = NonlinearFactorGraph; + + % Create keys for variables + i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); + j1 = symbol('l',1); j2 = symbol('l',2); + + % Add prior + priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin + priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); + % add directly to graph + graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); + + % Add odometry + odometry = Pose2(2.0, 0.0, 0.0); + odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); + graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise)); + graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise)); + + % Add bearing/range measurement factors + degrees = pi/180; + brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]); + graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(8), brNoise)); + graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise)); + graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise)); + +Of Keys and Symbols +~~~~~~~~~~~~~~~~~~~~~~~ + +The only unexplained code is on lines 4-6: here we create integer keys +for the poses and landmarks using the ***symbol*** function. In GTSAM, +we address all variables using the ***Ke***\ **y** type, which is just a +typedef to ***size\_t*** a 32 or 64 bit integer, +depending on your platform. The keys do not have to be numbered continuously, but they do have to +be unique within a given factor graph. For factor graphs with different +types of variables, we provide the ***symbol*** function in MATLAB, and +the ***Symbol*** type in C++, to help you create (large) integer keys +that are far apart in the space of possible keys, so you don't have to +think about starting the point numbering at some arbitrary offset. To +create a a *symbol key* you simply provide a character and an integer +index. You can use base 0 or 1, or use arbitrary indices: it does not +matter. In the code above, we we use 'x' for poses, and 'l' for +landmarks. + +The optimized result for the factor graph created by Listing +`5.1 <#listing_PlanarSLAMExample>`__ is shown in Figure +`11 <#fig_PlanarSLAMExample>`__, and it is readily apparent that the +landmark :math:`l_{1}` with two measurements is better localized. In +MATLAB we can also examine the actual numerical values, and doing so +reveals some more GTSAM magic: + +>> result Values with 5 values: l1: (2, 2) l2: (4, 2) x1: (-1.8e-16, +5.1e-17, -1.5e-17) x2: (2, -5.8e-16, -4.6e-16) x3: (4, -3.1e-15, +-4.6e-16) + +Indeed, the keys generated by symbol are automatically detected by the +***print*** method in the ***Values*** class, and rendered in +human-readable form “x1”, “l2”, etc, rather than as large, unwieldy +integers. This magic extends to most factors and other classes where the +**Key** type is used. + +A Larger Example +~~~~~~~~~~~~~~~~~~~~ + +|image: 14\_Users\_dellaert\_git\_github\_doc\_images\_littleRobot.png| +Figure 12: A larger example with about 100 poses and 30 or so landmarks, +as produced by gtsam\_examples/PlanarSLAMExample\_graph.m + +GTSAM comes with a slightly larger example that is read from a .graph +file by PlanarSLAMExample\_graph.m, shown in Figure +`12 <#fig_littleRobot>`__. To not clutter the figure only the marginals +are shown, not the lines of sight. This example, with 119 (multivariate) +variables and 517 factors optimizes in less than 10 ms. + +A Real-World Example +~~~~~~~~~~~~~~~~~~~~~~~~ + +|image: 15\_Users\_dellaert\_git\_github\_doc\_images\_Victoria.png| +Figure 13: Small section of optimized trajectory and landmarks (trees +detected in a laser range finder scan) from data recorded in Sydney's +Victoria Park (dataset due to Jose Guivant, U. Sydney). + +A real-world example is shown in Figure `13 <#fig_Victoria_1>`__, using +data from a well known dataset collected in Sydney's Victoria Park, +using a truck equipped with a laser range-finder. The covariance +matrices in this figure were computed very efficiently, as explained in +detail in (`Kaess and Dellaert, 2009 <#LyXCite-Kaess09ras>`__). The +exact covariances (blue, smaller ellipses) obtained by our fast +algorithm coincide with the exact covariances based on full inversion +(orange, mostly hidden by blue). The much larger conservative covariance +estimates (green, large ellipses) were based on our earlier work in +(`Kaess et al., 2008 <#LyXCite-Kaess08tro>`__). diff --git a/docs/build/html/_sources/MatlabExamples.rst.txt b/docs/build/html/_sources/MatlabExamples.rst.txt new file mode 100644 index 0000000000..4b19c7c952 --- /dev/null +++ b/docs/build/html/_sources/MatlabExamples.rst.txt @@ -0,0 +1,5 @@ +Matlab Examples +================= + + +(Some selected examples from source code.) diff --git a/docs/build/html/_sources/ModelingRobotMotion.rst.txt b/docs/build/html/_sources/ModelingRobotMotion.rst.txt new file mode 100644 index 0000000000..c5b97e8772 --- /dev/null +++ b/docs/build/html/_sources/ModelingRobotMotion.rst.txt @@ -0,0 +1,221 @@ +Modeling Robot Motion +----------------------- + +Modeling with Factor Graphs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Before diving into a SLAM example, let us consider the simpler problem +of modeling robot motion. This can be done with a *continuous* Markov +chain, and provides a gentle introduction to GTSAM. + +|image: 4\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph.png| +Figure 3: Factor graph for robot localization. + +The factor graph for a simple example is shown in Figure +`3 <#fig_OdometryFG>`__. There are three variables :math:`x_{1}`, +:math:`x_{2}`, and :math:`x_{3}` which represent the poses of the robot +over time, rendered in the figure by the open-circle variable nodes. In +this example, we have one **unary factor** +:math:`f_{0}\left( x_{1} \right)` on the first pose :math:`x_{1}` that +encodes our prior knowledge about :math:`x_{1}`, and two **binary +factors** that relate successive poses, respectively +:math:`f_{1}\left( {x_{1},x_{2};o_{1}} \right)` and +:math:`f_{2}\left( {x_{2},x_{3};o_{2}} \right)`, where :math:`o_{1}` and +:math:`o_{2}` represent odometry measurements. + +Creating a Factor Graph +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following C++ code, included in GTSAM as an example, creates the +factor graph in Figure `3 <#fig_OdometryFG>`__: + +:: + + // Create an empty nonlinear factor graph + NonlinearFactorGraph graph; + + // Add a Gaussian prior on pose x_1 + Pose2 priorMean(0.0, 0.0, 0.0); + noiseModel::Diagonal::shared_ptr priorNoise = + noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); + graph.add(PriorFactor(1, priorMean, priorNoise)); + + // Add two odometry factors + Pose2 odometry(2.0, 0.0, 0.0); + noiseModel::Diagonal::shared_ptr odometryNoise = + noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); + graph.add(BetweenFactor(1, 2, odometry, odometryNoise)); + graph.add(BetweenFactor(2, 3, odometry, odometryNoise)); + +Above, line 2 creates an empty factor graph. We then add the factor +:math:`f_{0}\left( x_{1} \right)` on lines 5-8 as an instance of +***PriorFactor***, a templated class provided in the slam subfolder, +with ***T=Pose2***. Its constructor takes a variable ***Key*** (in this +case 1), a mean of type ***Pose2,*** created on Line 5, and a noise +model for the prior density. We provide a diagonal Gaussian of type +***noiseModel::Diagonal*** by specifying three standard deviations in +line 7, respectively 30 cm. on the robot's position, and 0.1 radians on +the robot's orientation. Note that the ***Sigmas*** constructor returns +a shared pointer, anticipating that typically the same noise models are +used for many different factors. + +Similarly, odometry measurements are specified as ***Pose2*** on line +11, with a slightly different noise model defined on line 12-13. We then +add the two factors :math:`f_{1}\left( {x_{1},x_{2};o_{1}} \right)` and +:math:`f_{2}\left( {x_{2},x_{3};o_{2}} \right)` on lines 14-15, as +instances of yet another templated class, ***BetweenFactor***, again +with ***T=Pose2***. + +When running the example (*make OdometryExample.run* on the command +prompt), it will print out the factor graph as follows: + +:: + + Factor Graph: + size: 3 + Factor 0: PriorFactor on 1 + prior mean: (0, 0, 0) + noise model: diagonal sigmas [0.3; 0.3; 0.1]; + Factor 1: BetweenFactor(1,2) + measured: (2, 0, 0) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + Factor 2: BetweenFactor(2,3) + measured: (2, 0, 0) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + +Factor Graphs versus Values +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +At this point it is instructive to emphasize two important design ideas +underlying GTSAM: + +#. The factor graph and its embodiment in code specify the joint + probability distribution :math:`P\left( X \middle| Z \right)` over + the *entire* trajectory + :math:`X = \left\{ {x_{1},x_{2},x_{3}} \right\}` of the robot, rather + than just the last pose. This *smoothing* view of the world gives + GTSAM its name: “smoothing and mapping”. Later in this document we + will talk about how we can also use GTSAM to do filtering (which you + often do *not* want to do) or incremental inference (which we do all + the time). +#. A factor graph in GTSAM is just the specification of the probability + density :math:`P\left( X \middle| Z \right)`, and the corresponding + ***FactorGraph*** class and its derived classes do not ever contain a + “solution”. Rather, there is a separate type ***Values*** that is + used to specify specific values for (in this case) :math:`x_{1}`, + :math:`x_{2}`, and :math:`x_{3}`, which can then be used to evaluate + the probability (or, more commonly, the error) associated with + particular values. + +The latter point is often a point of confusion with beginning users of +GTSAM. It helps to remember that when designing GTSAM we took a +functional approach of classes corresponding to mathematical objects, +which are usually immutable. You should think of a factor graph as a +*function* to be applied to values -as the notation +:math:`f\left( X \right) \propto P\left( X \middle| Z \right)` implies- +rather than as an object to be modified. + +Non-linear Optimization in GTSAM +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The listing below creates a ***Values*** instance, and uses it as the +initial estimate to find the maximum a-posteriori (MAP) assignment for +the trajectory :math:`X`: + +:: + + // create (deliberately inaccurate) initial estimate + Values initial; + initial.insert(1, Pose2(0.5, 0.0, 0.2)); + initial.insert(2, Pose2(2.3, 0.1, -0.2)); + initial.insert(3, Pose2(4.1, 0.1, 0.1)); + + // optimize using Levenberg-Marquardt optimization + Values result = LevenbergMarquardtOptimizer(graph, initial).optimize(); + +Lines 2-5 in Listing `2.4 <#listing_OdometryOptimize>`__ create the +initial estimate, and on line 8 we create a non-linear +Levenberg-Marquardt style optimizer, and call ***optimize*** using +default parameter settings. The reason why GTSAM needs to perform +non-linear optimization is because the odometry factors +:math:`f_{1}\left( {x_{1},x_{2};o_{1}} \right)` and +:math:`f_{2}\left( {x_{2},x_{3};o_{2}} \right)` are non-linear, as they +involve the orientation of the robot. This also explains why the factor +graph we created in Listing `2.2 <#listing_OdometryExample>`__ is of +type ***NonlinearFactorGraph***. The optimization class linearizes this +graph, possibly multiple times, to minimize the non-linear squared error +specified by the factors. + +The relevant output from running the example is as follows: + +:: + + Initial Estimate: + Values with 3 values: + Value 1: (0.5, 0, 0.2) + Value 2: (2.3, 0.1, -0.2) + Value 3: (4.1, 0.1, 0.1) + + Final Result: + Values with 3 values: + Value 1: (-1.8e-16, 8.7e-18, -9.1e-19) + Value 2: (2, 7.4e-18, -2.5e-18) + Value 3: (4, -1.8e-18, -3.1e-18) + +It can be seen that, subject to very small tolerance, the ground truth +solution :math:`x_{1} = \left( {0,0,0} \right)`, +:math:`x_{2} = \left( {2,0,0} \right)`, and +:math:`x_{3} = \left( {4,0,0} \right)` is recovered. + +Full Posterior Inference +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +GTSAM can also be used to calculate the covariance matrix for each pose +after incorporating the information from all measurements :math:`Z`. +Recognizing that the factor graph encodes the **posterior density** +:math:`P\left( X \middle| Z \right)`, the mean :math:`\mu` together with +the covariance :math:`\Sigma` for each pose :math:`x` approximate the +**marginal posterior density** :math:`P\left( x \middle| Z \right)`. +Note that this is just an approximation, as even in this simple case the +odometry factors are actually non-linear in their arguments, and GTSAM +only computes a Gaussian approximation to the true underlying posterior. + +The following C++ code will recover the posterior marginals: + +:: + + // Query the marginals + cout.precision(2); + Marginals marginals(graph, result); + cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl; + cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl; + cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl; + +The relevant output from running the example is as follows: + +:: + + x1 covariance: + 0.09 1.1e-47 5.7e-33 + 1.1e-47 0.09 1.9e-17 + 5.7e-33 1.9e-17 0.01 + x2 covariance: + 0.13 4.7e-18 2.4e-18 + 4.7e-18 0.17 0.02 + 2.4e-18 0.02 0.02 + x3 covariance: + 0.17 2.7e-17 8.4e-18 + 2.7e-17 0.37 0.06 + 8.4e-18 0.06 0.03 + +What we see is that the marginal covariance +:math:`P\left( x_{1} \middle| Z \right)` on :math:`x_{1}` is simply the +prior knowledge on :math:`x_{1}`, but as the robot moves the uncertainty +in all dimensions grows without bound, and the :math:`y` and +:math:`\theta` components of the pose become (positively) correlated. + +An important fact to note when interpreting these numbers is that +covariance matrices are given in *relative* coordinates, not absolute +coordinates. This is because internally GTSAM optimizes for a change +with respect to a linearization point, as do all nonlinear optimization +libraries. diff --git a/docs/build/html/_sources/MoreApplications.rst.txt b/docs/build/html/_sources/MoreApplications.rst.txt new file mode 100644 index 0000000000..391aebe1d4 --- /dev/null +++ b/docs/build/html/_sources/MoreApplications.rst.txt @@ -0,0 +1,74 @@ +More Applications +------------------- + +While a detailed discussion of all the things you can do with GTSAM will +take us too far, below is a small survey of what you can expect to do, +and which we did using GTSAM. + +Conjugate Gradient Optimization +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +|image: 17\_Users\_dellaert\_git\_github\_doc\_images\_Beijing.png| +Figure 15: A map of Beijing, with a spanning tree shown in black, and +the remaining *loop-closing* constraints shown in red. A spanning tree +can be used as a *preconditioner* by GTSAM. + +GTSAM also includes efficient preconditioned conjugate gradients (PCG) +methods for solving large-scale SLAM problems. While direct methods, +popular in the literature, exhibit quadratic convergence and can be +quite efficient for sparse problems, they typically require a lot of +storage and efficient elimination orderings to be found. In contrast, +iterative optimization methods only require access to the gradient and +have a small memory footprint, but can suffer from poor convergence. Our +method, *subgraph preconditioning*, explained in detail in `Dellaert et +al. <#LyXCite-Dellaert10iros>`__ (2010); `Jian et +al. <#LyXCite-Jian11iccv>`__ (2011), combines the advantages of direct +and iterative methods, by identifying a sub-problem that can be easily +solved using direct methods, and solving for the remaining part using +PCG. The easy sub-problems correspond to a spanning tree, a planar +subgraph, or any other substructure that can be efficiently solved. An +example of such a subgraph is shown in Figure `15 <#fig_Beijing>`__. + +Visual Odometry +~~~~~~~~~~~~~~~~~~~ + +A gentle introduction to vision-based sensing is **Visual Odometry** +(abbreviated VO, see e.g. `Nistér et al. <#LyXCite-Nister04cvpr2>`__ +(2004)), which provides pose constraints between successive robot poses +by tracking or associating visual features in successive images taken by +a camera mounted rigidly on the robot. GTSAM includes both C++ and +MATLAB example code, as well as VO-specific factors to help you on the +way. + +Visual SLAM +~~~~~~~~~~~~~~~ + +**Visual SLAM** (see e.g., `Davison <#LyXCite-Davison03iccv>`__ (2003)) +is a SLAM variant where 3D points are observed by a camera as the camera +moves through space, either mounted on a robot or moved around by hand. +GTSAM, and particularly iSAM (see below), can easily be adapted to be +used as the back-end optimizer in such a scenario. + +Fixed-lag Smoothing and Filtering +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +GTSAM can easily perform recursive estimation, where only a subset of +the poses are kept in the factor graph, while the remaining poses are +marginalized out. In all examples above we explicitly optimize for all +variables using all available measurements, which is called +**Smoothing** because the trajectory is “smoothed” out, and this is +where GTSAM got its name (GT *Smoothing* and Mapping). When instead only +the last few poses are kept in the graph, one speaks of **Fixed-lag +Smoothing**. Finally, when only the single most recent poses is kept, +one speaks of **Filtering**, and indeed the original formulation of SLAM +was filter-based (`Smith et al., 1988 <#LyXCite-Smith87b>`__). + +Discrete Variables and HMMs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Finally, factor graphs are not limited to continuous variables: GTSAM +can also be used to model and solve discrete optimization problems. For +example, a Hidden Markov Model (HMM) has the same graphical model +structure as the Robot Localization problem from Section +`2 <#sec_Robot_Localization>`__, except that in an HMM the variables are +discrete. GTSAM can optimize and perform inference for discrete models. diff --git a/docs/build/html/_sources/Overview.rst.txt b/docs/build/html/_sources/Overview.rst.txt new file mode 100644 index 0000000000..1433988c8b --- /dev/null +++ b/docs/build/html/_sources/Overview.rst.txt @@ -0,0 +1,48 @@ + +Overview +-------- + +**Factor graphs** are graphical models (`Koller and Friedman, +2009 <#LyXCite-Koller09book>`__) that are well suited to modeling +complex estimation problems, such as Simultaneous Localization and +Mapping (SLAM) or Structure from Motion (SFM). You might be familiar +with another often used graphical model, Bayes networks, which are +directed acyclic graphs. A **factor graph,** however, is a *bipartite* +graph consisting of factors connected to variables. The **variables** +represent the unknown random variables in the estimation problem, +whereas the **factors** represent probabilistic constraints on those +variables, derived from measurements or prior knowledge. In the +following sections I will illustrate this with examples from both +robotics and vision. + +The GTSAM toolbox (GTSAM stands for “Georgia Tech Smoothing and +Mapping”) toolbox is a BSD-licensed C++ library based on factor graphs, +developed at the Georgia Institute of Technology by myself, many of my +students, and collaborators. It provides state of the art solutions to +the SLAM and SFM problems, but can also be used to model and solve both +simpler and more complex estimation problems. It also provides a MATLAB +interface which allows for rapid prototype development, visualization, +and user interaction. + +GTSAM exploits sparsity to be computationally efficient. Typically +measurements only provide information on the relationship between a +handful of variables, and hence the resulting factor graph will be +sparsely connected. This is exploited by the algorithms implemented in +GTSAM to reduce computational complexity. Even when graphs are too dense +to be handled efficiently by direct methods, GTSAM provides iterative +methods that are quite efficient regardless. + +You can download the latest version of GTSAM from our `Github +repo `__. + + +Acknowledgements +~~~~~~~~~~~~~~~~~ + +GTSAM was made possible by the efforts of many collaborators at Georgia +Tech and elsewhere, including but not limited to Doru Balcan, Chris +Beall, Alex Cunningham, Alireza Fathi, Eohan George, Viorela Ila, +Yong-Dian Jian, Michael Kaess, Kai Ni, Carlos Nieto, Duy-Nguyen Ta, +Manohar Paluri, Christian Potthast, Richard Roberts, Grant Schindler, +and Stephen Williams. In addition, Paritosh Mohan helped me with the +manual. Many thanks all for your hard work! diff --git a/docs/build/html/_sources/PoseSLAM.rst.txt b/docs/build/html/_sources/PoseSLAM.rst.txt new file mode 100644 index 0000000000..30839a212a --- /dev/null +++ b/docs/build/html/_sources/PoseSLAM.rst.txt @@ -0,0 +1,232 @@ +PoseSLAM +---------- + +Loop Closure Constraints +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The simplest instantiation of a SLAM problem is **PoseSLAM**, which +avoids building an explicit map of the environment. The goal of SLAM is +to simultaneously localize a robot and map the environment given +incoming sensor measurements (`Durrant-Whyte and Bailey, +2006 <#LyXCite-DurrantWhyte06ram>`__). Besides wheel odometry, one of +the most popular sensors for robots moving on a plane is a 2D +laser-range finder, which provides both odometry constraints between +successive poses, and loop-closure constraints when the robot re-visits +a previously explored part of the environment. + +|image: 8\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph3.png| +Figure 6: Factor graph for PoseSLAM. + +A factor graph example for PoseSLAM is shown in Figure +`6 <#fig_Pose2SLAM>`__. The following C++ code, included in GTSAM as an +example, creates this factor graph in code: + +:: + + NonlinearFactorGraph graph; + noiseModel::Diagonal::shared_ptr priorNoise = + noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); + graph.add(PriorFactor(1, Pose2(0, 0, 0), priorNoise)); + + // Add odometry factors + noiseModel::Diagonal::shared_ptr model = + noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); + graph.add(BetweenFactor(1, 2, Pose2(2, 0, 0 ), model)); + graph.add(BetweenFactor(2, 3, Pose2(2, 0, M_PI_2), model)); + graph.add(BetweenFactor(3, 4, Pose2(2, 0, M_PI_2), model)); + graph.add(BetweenFactor(4, 5, Pose2(2, 0, M_PI_2), model)); + + // Add the loop closure constraint + graph.add(BetweenFactor(5, 2, Pose2(2, 0, M_PI_2), model)); + +As before, lines 1-4 create a nonlinear factor graph and add the unary +factor :math:`f_{0}\left( x_{1} \right)`. As the robot travels through +the world, it creates binary factors +:math:`f_{t}\left( {x_{t},x_{t + 1}} \right)` corresponding to odometry, +added to the graph in lines 6-12 (Note that M\_PI\_2 refers to pi/2). +But line 15 models a different event: a **loop closure**. For example, +the robot might recognize the same location using vision or a laser +range finder, and calculate the geometric pose constraint to when it +first visited this location. This is illustrated for poses :math:`x_{5}` +and :math:`x_{2}`, and generates the (red) loop closing factor +:math:`f_{5}\left( {x_{5},x_{2}} \right)`. + +|image: 9\_Users\_dellaert\_git\_github\_doc\_images\_example1.png| +Figure 7: The result of running optimize on the factor graph in Figure +`6 <#fig_Pose2SLAM>`__. + +We can optimize this factor graph as before, by creating an initial +estimate of type ***Values***, and creating and running an optimizer. +The result is shown graphically in Figure `7 <#fig_example>`__, along +with covariance ellipses shown in green. These covariance ellipses in 2D +indicate the marginal over position, over all possible orientations, and +show the area which contain 68.26% of the probability mass (in 1D this +would correspond to one standard deviation). The graph shows in a clear +manner that the uncertainty on pose :math:`x_{5}` is now much less than +if there would be only odometry measurements. The pose with the highest +uncertainty, :math:`x_{4}`, is the one furthest away from the unary +constraint :math:`f_{0}\left( x_{1} \right)`, which is the only factor +tying the graph to a global coordinate frame. + +The figure above was created using an interface that allows you to use +GTSAM from within MATLAB, which provides for visualization and rapid +development. We discuss this next. + +Using the MATLAB Interface +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +A large subset of the GTSAM functionality can be accessed through +wrapped classes from within MATLAB +(GTSAM also allows you to wrap your own custom-made classes, although +this is outside the scope of this manual). +The following code excerpt is the MATLAB equivalent of the C++ code in +Listing `4.1 <#listing_Pose2SLAMExample>`__: + +:: + + graph = NonlinearFactorGraph; + priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); + graph.add(PriorFactorPose2(1, Pose2(0, 0, 0), priorNoise)); + + %% Add odometry factors + model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); + graph.add(BetweenFactorPose2(1, 2, Pose2(2, 0, 0 ), model)); + graph.add(BetweenFactorPose2(2, 3, Pose2(2, 0, pi/2), model)); + graph.add(BetweenFactorPose2(3, 4, Pose2(2, 0, pi/2), model)); + graph.add(BetweenFactorPose2(4, 5, Pose2(2, 0, pi/2), model)); + + %% Add pose constraint + graph.add(BetweenFactorPose2(5, 2, Pose2(2, 0, pi/2), model)); + +Note that the code is almost identical, although there are a few syntax +and naming differences: + +- Objects are created by calling a constructor instead of allocating + them on the heap. +- Namespaces are done using dot notation, i.e., + ***noiseModel::Diagonal::SigmasClasses*** becomes + ***noiseModel.Diagonal.Sigmas***. +- ***Vector*** and ***Matrix*** classes in C++ are just + vectors/matrices in MATLAB. +- As templated classes do not exist in MATLAB, these have been + hardcoded in the GTSAM interface, e.g., ***PriorFactorPose2*** + corresponds to the C++ class ***PriorFactor***, etc. + +After executing the code, you can call *whos* on the MATLAB command +prompt to see the objects created. Note that the indicated *Class* +corresponds to the wrapped C++ classes: + +:: + + >> whos + Name Size Bytes Class + graph 1x1 112 gtsam.NonlinearFactorGraph + priorNoise 1x1 112 gtsam.noiseModel.Diagonal + model 1x1 112 gtsam.noiseModel.Diagonal + initialEstimate 1x1 112 gtsam.Values + optimizer 1x1 112 gtsam.LevenbergMarquardtOptimizer + +In addition, any GTSAM object can be examined in detail, yielding +identical output to C++: + +:: + + >> priorNoise + diagonal sigmas [0.3; 0.3; 0.1]; + + >> graph + size: 6 + factor 0: PriorFactor on 1 + prior mean: (0, 0, 0) + noise model: diagonal sigmas [0.3; 0.3; 0.1]; + factor 1: BetweenFactor(1,2) + measured: (2, 0, 0) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + factor 2: BetweenFactor(2,3) + measured: (2, 0, 1.6) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + factor 3: BetweenFactor(3,4) + measured: (2, 0, 1.6) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + factor 4: BetweenFactor(4,5) + measured: (2, 0, 1.6) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + factor 5: BetweenFactor(5,2) + measured: (2, 0, 1.6) + noise model: diagonal sigmas [0.2; 0.2; 0.1]; + +And it does not stop there: we can also call some of the functions +defined for factor graphs. E.g., + +:: + + >> graph.error(initialEstimate) + ans = + 20.1086 + + >> graph.error(result) + ans = + 8.2631e-18 + +computes the sum-squared error +:math:`\frac{1}{2}\sum\limits_{i}{||h_{i}\left( X_{i} \right) - z_{i}||}_{\Sigma}^{2}{}` +before and after optimization. + +Reading and Optimizing Pose Graphs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +|image: 10\_Users\_dellaert\_git\_github\_doc\_images\_w100-result.png| +Figure 8: MATLAB plot of small Manhattan world example with 100 poses +(due to Ed Olson). The initial estimate is shown in green. The optimized +trajectory, with covariance ellipses, in blue. + +The ability to work in MATLAB adds a much quicker development cycle, and +effortless graphical output. The optimized trajectory in Figure +`8 <#fig_w100>`__ was produced by the code below, in which *load2D* +reads TORO files. To see how plotting is done, refer to the full source +code. +:: + + %% Initialize graph, initial estimate, and odometry noise + datafile = findExampleDataFile('w100.graph'); + model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]); + [graph,initial] = load2D(datafile, model); + + %% Add a Gaussian prior on pose x_0 + priorMean = Pose2(0, 0, 0); + priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]); + graph.add(PriorFactorPose2(0, priorMean, priorNoise)); + + %% Optimize using Levenberg-Marquardt optimization and get marginals + optimizer = LevenbergMarquardtOptimizer(graph, initial); + result = optimizer.optimizeSafely; + marginals = Marginals(graph, result); + +PoseSLAM in 3D +~~~~~~~~~~~~~~~~~~ + +PoseSLAM can easily be extended to 3D poses, but some care is needed to +update 3D rotations. GTSAM supports both **quaternions** and +:math:`3 \times 3` **rotation matrices** to represent 3D rotations. The +selection is made via the compile flag GTSAM\_USE\_QUATERNIONS. + +|image: +11\_Users\_dellaert\_git\_github\_doc\_images\_sphere2500-result.png| +Figure 9: 3D plot of sphere example (due to Michael Kaess). The very +wrong initial estimate, derived from odometry, is shown in green. The +optimized trajectory is shown red. Code below: + +:: + + %% Initialize graph, initial estimate, and odometry noise + datafile = findExampleDataFile('sphere2500.txt'); + model = noiseModel.Diagonal.Sigmas([5*pi/180; 5*pi/180; 5*pi/180; 0.05; 0.05; 0.05]); + [graph,initial] = load3D(datafile, model, true, 2500); + plot3DTrajectory(initial, 'g-', false); % Plot Initial Estimate + + %% Read again, now with all constraints, and optimize + graph = load3D(datafile, model, false, 2500); + graph.add(NonlinearEqualityPose3(0, initial.atPose3(0))); + optimizer = LevenbergMarquardtOptimizer(graph, initial); + result = optimizer.optimizeSafely(); + plot3DTrajectory(result, 'r-', false); axis equal; diff --git a/docs/build/html/_sources/PythonExamples.rst.txt b/docs/build/html/_sources/PythonExamples.rst.txt new file mode 100644 index 0000000000..06bb6cb786 --- /dev/null +++ b/docs/build/html/_sources/PythonExamples.rst.txt @@ -0,0 +1,5 @@ +Python Examples +================= + + +(Some selected examples from source code.) diff --git a/docs/build/html/_sources/RobotLocalization.rst.txt b/docs/build/html/_sources/RobotLocalization.rst.txt new file mode 100644 index 0000000000..c582325b08 --- /dev/null +++ b/docs/build/html/_sources/RobotLocalization.rst.txt @@ -0,0 +1,201 @@ +Robot Localization +-------------------- + +Unary Measurement Factors +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In this section we add measurements to the factor graph that will help +us actually *localize* the robot over time. The example also serves as a +tutorial on creating new factor types. + +|image: 5\_Users\_dellaert\_git\_github\_doc\_images\_FactorGraph2.png| +Figure 4: Robot localization factor graph with unary measurement factors +at each time step. + +In particular, we use **unary measurement factors** to handle external +measurements. The example from Section `2 <#sec_Robot_Localization>`__ +is not very useful on a real robot, because it only contains factors +corresponding to odometry measurements. These are imperfect and will +lead to quickly accumulating uncertainty on the last robot pose, at +least in the absence of any external measurements (see Section +`2.5 <#subsec_Full_Posterior_Inference>`__). Figure +`4 <#fig_LocalizationFG>`__ shows a new factor graph where the prior +:math:`f_{0}\left( x_{1} \right)` is omitted and instead we added three +unary factors :math:`f_{1}\left( {x_{1};z_{1}} \right)`, +:math:`f_{2}\left( {x_{2};z_{2}} \right)`, and +:math:`f_{3}\left( {x_{3};z_{3}} \right)`, one for each localization +measurement :math:`z_{t}`, respectively. Such unary factors are +applicable for measurements :math:`z_{t}` that depend *only* on the +current robot pose, e.g., GPS readings, correlation of a laser +range-finder in a pre-existing map, or indeed the presence of absence of +ceiling lights (see `Dellaert et al. <#LyXCite-Dellaert99b>`__ (1999) +for that amusing example). + +Defining Custom Factors +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In GTSAM, you can create custom unary factors by deriving a new class +from the built-in class ***NoiseModelFactor1***, which implements a +unary factor corresponding to a measurement likelihood with a Gaussian +noise model, +:math:`L\left( q;m \right)\operatorname{=\ exp}\left\{ - \frac{1}{2}{||h\left( q \right) - m||}_{\Sigma}^{2} \right\} = f\left( q \right)` +where :math:`m` is the measurement, :math:`q` is the unknown variable, +:math:`h\left( q \right)` is a (possibly nonlinear) measurement +function, and :math:`\Sigma` is the noise covariance. Note that +:math:`m` is considered *known* above, and the likelihood +:math:`L\left( {q;m} \right)` will only ever be evaluated as a function +of :math:`q`, which explains why it is a unary factor +:math:`f\left( q \right)`. It is always the unknown variable :math:`q` +that is either likely or unlikely, given the measurement. + +**Note:** many people get this backwards, often misled by the +conditional density notation :math:`P\left( m \middle| q \right)`. In +fact, the likelihood :math:`L\left( {q;m} \right)` is *defined* as any +function of :math:`q` proportional to +:math:`P\left( m \middle| q \right)`. + +Listing `3.2 <#listing_LocalizationFactor>`__ shows an example on how to +define the custom factor class ***UnaryFactor*** which implements a +“GPS-like” measurement likelihood: + +:: + + class UnaryFactor: public NoiseModelFactor1 { + double mx_, my_; ///< X and Y measurements + + public: + UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model): + NoiseModelFactor1(model, j), mx_(x), my_(y) {} + + Vector evaluateError(const Pose2& q, + boost::optional H = boost::none) const + { + if (H) (*H) = (Matrix(2,3)<< 1.0,0.0,0.0, 0.0,1.0,0.0).finished(); + return (Vector(2) << q.x() - mx_, q.y() - my_).finished(); + } + }; + +In defining the derived class on line 1, we provide the template +argument ***Pose2*** to indicate the type of the variable :math:`q`, +whereas the measurement is stored as the instance variables ***mx\_*** +and ***my\_***, defined on line 2. The constructor on lines 5-6 simply +passes on the variable key :math:`j` and the noise model to the +superclass, and stores the measurement values provided. The most +important function to has be implemented by every factor class is +***evaluateError***, which should return +:math:`E\left( q \right) = {h\left( q \right) - m}` which is done on +line 12. Importantly, because we want to use this factor for nonlinear +optimization (see e.g., `Dellaert and Kaess +2006 <#LyXCite-Dellaert06ijrr>`__ for details), whenever the optional +argument :math:`H` is provided, a ***Matrix*** reference, the function +should assign the **Jacobian** of :math:`h\left( q \right)` to it, +evaluated at the provided value for :math:`q`. This is done for this +example on line 11. In this case, the Jacobian of the 2-dimensional +function :math:`h`, which just returns the position of the robot, + +.. math:: + + h\left( q \right) = \left\lbrack \begin{array}{l} + q_{x} \\ + q_{y} \\ + \end{array} \right\rbrack + +with respect the 3-dimensional pose +:math:`q = \left( {q_{x},q_{y},q_{\theta}} \right)`, yields the +following simple :math:`2 \times 3` matrix: + +.. math:: + + H = \left\lbrack \begin{array}{lll} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + \end{array} \right\rbrack + +Using Custom Factors +~~~~~~~~~~~~~~~~~~~~~~~~ + +The following C++ code fragment illustrates how to create and add custom +factors to a factor graph: + +:: + + // add unary measurement factors, like GPS, on all three poses + noiseModel::Diagonal::shared_ptr unaryNoise = + noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y + graph.add(boost::make_shared(1, 0.0, 0.0, unaryNoise)); + graph.add(boost::make_shared(2, 2.0, 0.0, unaryNoise)); + graph.add(boost::make_shared(3, 4.0, 0.0, unaryNoise)); + +In Listing `3.3 <#listing_LocalizationExample2>`__, we create the noise +model on line 2-3, which now specifies two standard deviations on the +measurements :math:`m_{x}` and :math:`m_{y}`. On lines 4-6 we create +***shared\_ptr*** versions of three newly created ***UnaryFactor*** +instances, and add them to graph. GTSAM uses shared pointers to refer to +factors in factor graphs, and ***boost::make\_shared*** is a convenience +function to simultaneously construct a class and create a +***shared\_ptr*** to it. We obtain the factor graph from Figure +`4 <#fig_LocalizationFG>`__. + +Full Posterior Inference +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The three GPS factors are enough to fully constrain all unknown poses +and tie them to a “global” reference frame, including the three unknown +orientations. If not, GTSAM would have exited with a singular matrix +exception. The marginals can be recovered exactly as in Section +`2.5 <#subsec_Full_Posterior_Inference>`__, and the solution and +marginal covariances are now given by the following: + +:: + + Final Result: + Values with 3 values: + Value 1: (-1.5e-14, 1.3e-15, -1.4e-16) + Value 2: (2, 3.1e-16, -8.5e-17) + Value 3: (4, -6e-16, -8.2e-17) + + x1 covariance: + 0.0083 4.3e-19 -1.1e-18 + 4.3e-19 0.0094 -0.0031 + -1.1e-18 -0.0031 0.0082 + x2 covariance: + 0.0071 2.5e-19 -3.4e-19 + 2.5e-19 0.0078 -0.0011 + -3.4e-19 -0.0011 0.0082 + x3 covariance: + 0.0083 4.4e-19 1.2e-18 + 4.4e-19 0.0094 0.0031 + 1.2e-18 0.0031 0.018 + +Comparing this with the covariance matrices in Section +`2.5 <#subsec_Full_Posterior_Inference>`__, we can see that the +uncertainty no longer grows without bounds as measurement uncertainty +accumulates. Instead, the “GPS” measurements more or less constrain the +poses evenly, as expected. + +|image: 6\_Users\_dellaert\_git\_github\_doc\_images\_Odometry.png| + +Sub-Figure a: Odometry marginals + +Figure 5: Comparing the marginals resulting from the “odometry” factor +graph in Figure `3 <#fig_OdometryFG>`__ and the “localization” factor +graph in Figure `4 <#fig_LocalizationFG>`__. + +|image: 7\_Users\_dellaert\_git\_github\_doc\_images\_Localization.png| + +Sub-Figure b: Localization Marginals + +It helps a lot when we view this graphically, as in Figure +`5 <#fig_CompareMarginals>`__, where I show the marginals on position as +covariance ellipses that contain 68.26% of all probability mass. For the +odometry marginals, it is immediately apparent from the figure that (1) +the uncertainty on pose keeps growing, and (2) the uncertainty on +angular odometry translates into increasing uncertainty on y. The +localization marginals, in contrast, are constrained by the unary +factors and are all much smaller. In addition, while less apparent, the +uncertainty on the middle pose is actually smaller as it is constrained +by odometry from two sides. + +You might now be wondering how we produced these figures. The answer is +via the MATLAB interface of GTSAM, which we will demonstrate in the next +section. diff --git a/docs/build/html/_sources/StructureFromMotion.rst.txt b/docs/build/html/_sources/StructureFromMotion.rst.txt new file mode 100644 index 0000000000..9304931208 --- /dev/null +++ b/docs/build/html/_sources/StructureFromMotion.rst.txt @@ -0,0 +1,56 @@ +Structure from Motion +----------------------- + +|image: 16\_Users\_dellaert\_git\_github\_doc\_images\_cube.png| Figure +14: An optimized “Structure from Motion” with 10 cameras arranged in a +circle, observing the 8 vertices of a :math:`20 \times 20 \times 20` +cube centered around the origin. The camera is rendered with color-coded +axes, (RGB for XYZ) and the viewing direction is is along the positive +Z-axis. Also shown are the 3D error covariance ellipses for both cameras +and points. + +**Structure from Motion** (SFM) is a technique to recover a 3D +reconstruction of the environment from corresponding visual features in +a collection of *unordered* images, see Figure `14 <#fig_SFMExample>`__. +In GTSAM this is done using exactly the same factor graph framework, +simply using SFM-specific measurement factors. In particular, there is a +**projection factor** that calculates the reprojection error +:math:`f\left( {x_{i},p_{j};z_{ij},K} \right)` for a given camera pose +:math:`x_{i}` (a ***Pose3***) and point :math:`p_{j}` (a ***Point3***). +The factor is parameterized by the 2D measurement :math:`z_{ij}` (a +***Point2***), and known calibration parameters :math:`K` (of type +***Cal3\_S2***). The following listing shows how to create the factor +graph: +:: + + %% Add factors for all measurements + noise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma); + for i = 1:length(Z), + for k = 1:length(Z{i}) + j = J{i}{k}; + G.add(GenericProjectionFactorCal3_S2( + Z{i}{k}, noise, symbol('x', i), symbol('p', j), K)); + end + end + +In Listing `6 <#listing_SFMExample>`__, assuming that the factor graph +was already created, we add measurement factors in the double loop. We +loop over images with index :math:`i`, and in this example the data is +given as two cell arrays: Z{i} specifies a set of measurements +:math:`z_{k}` in image :math:`i`, and J{i} specifies the corresponding +point index. The specific factor type we use is a +***GenericProjectionFactorCal3\_S2***, which is the MATLAB equivalent of +the C++ class ***GenericProjectionFactor***, where +***Cal3\_S2*** is the camera calibration type we choose to use (the +standard, no-radial distortion, 5 parameter calibration matrix). As +before landmark-based SLAM (Section `5 <#sec_Landmark_based_SLAM>`__), +here we use symbol keys except we now use the character 'p' to denote +points, rather than 'l' for landmark. + +Important note: a very tricky and difficult part of making SFM work is +(a) data association, and (b) initialization. GTSAM does neither of +these things for you: it simply provides the “bundle adjustment” +optimization. In the example, we simply assume the data association is +known (it is encoded in the J sets), and we initialize with the ground +truth, as the intent of the example is simply to show you how to set up +the optimization problem. diff --git a/docs/build/html/_sources/TutorialCreateNewFactor.rst.txt b/docs/build/html/_sources/TutorialCreateNewFactor.rst.txt new file mode 100644 index 0000000000..76645bf6e5 --- /dev/null +++ b/docs/build/html/_sources/TutorialCreateNewFactor.rst.txt @@ -0,0 +1,23 @@ +Creating new factor and variable types +======================================= + +GTSAM comes with a set of variable and factor types typically used in SFM and +SLAM. Geometry variables such as points and poses are in the geometry +subdirectory and module. Factors such as BetweenFactor and BearingFactor are in +the gtsam/slam directory. + +To use GTSAM to solve your own problems, you will often have to create new factor +types, which derive either from NonlinearFactor or NoiseModelFactor, or one of +their derived types. Here is an outline of the options: + +- The number of variables your factor involves is unknown at compile time - derive from NoiseModelFactor and implement NoiseModelFactor::unwhitenedError() + + - This is a factor expressing the sum-of-squares error between a measurement \f$ z \f$ and a measurement prediction function \f$ h(x) \f$, on which the errors are expected to follow some distribution specified by a noise model (see noiseModel). + +- The number of variables your factor involves is known at compile time and is between 1 and 6 - derive from NoiseModelFactor1, NoiseModelFactor2, NoiseModelFactor3, NoiseModelFactor4, NoiseModelFactor5, or NoiseModelFactor6, and implement \c evaluateError() + + - This factor expresses the same sum-of-squares error with a noise model, but makes the implementation task slightly easier than with %NoiseModelFactor. + +- Derive from NonlinearFactor + + - This is more advanced and allows creating factors without an explicit noise model, or that linearize to HessianFactor instead of JacobianFactor. diff --git a/docs/build/html/_sources/Tutorials.rst.txt b/docs/build/html/_sources/Tutorials.rst.txt new file mode 100644 index 0000000000..bcc5f36c23 --- /dev/null +++ b/docs/build/html/_sources/Tutorials.rst.txt @@ -0,0 +1,27 @@ +Tutorials +============ + +This is an updated version of the 2012 tech-report `Factor Graphs and +GTSAM: A Hands-on +Introduction `__ +by `Frank Dellaert `__. A more thorough +introduction to the use of factor graphs in robotics is the 2017 article +`Factor graphs for robot +perception `__ +by Frank Dellaert and Michael Kaess. + +.. toctree:: + :maxdepth: 2 + + Overview + FactorGraphs + ModelingRobotMotion + RobotLocalization + PoseSLAM + LandmarkBasedSLAM + StructureFromMotion + iSAM + MoreApplications + CppExamples + PythonExamples + MatlabExamples diff --git a/docs/build/html/_sources/iSAM.rst.txt b/docs/build/html/_sources/iSAM.rst.txt new file mode 100644 index 0000000000..862bc00670 --- /dev/null +++ b/docs/build/html/_sources/iSAM.rst.txt @@ -0,0 +1,67 @@ +iSAM: Incremental Smoothing and Mapping +----------------------------------------- + +GTSAM provides an incremental inference algorithm based on a more +advanced graphical model, the Bayes tree, which is kept up to date by +the **iSAM** algorithm (incremental Smoothing and Mapping, see `Kaess et +al. <#LyXCite-Kaess08tro>`__ (2008); `Kaess et +al. <#LyXCite-Kaess12ijrr>`__ (2012) for an in-depth treatment). For +mobile robots operating in real-time it is important to have access to +an updated map as soon as new sensor measurements come in. iSAM keeps +the map up-to-date in an efficient manner. + +Listing `7 <#listing_iSAMExample>`__ shows how to use iSAM in a simple +visual SLAM example. In line 1-2 we create a ***NonlinearISAM*** object +which will relinearize and reorder the variables every 3 steps. The +corect value for this parameter depends on how non-linear your problem +is and how close you want to be to gold-standard solution at every step. +In iSAM 2.0, this parameter is not needed, as iSAM2 automatically +determines when linearization is needed and for which variables. + +The example involves eight 3D points that are seen from eight successive +camera poses. Hence in the first step -which is omitted here- all eight +landmarks and the first pose are properly initialized. In the code this +is done by perturbing the known ground truth, but in a real application +great care is needed to properly initialize poses and landmarks, +especially in a monocular sequence. + +:: + + int relinearizeInterval = 3; + NonlinearISAM isam(relinearizeInterval); + + // ... first frame initialization omitted ... + + // Loop over the different poses, adding the observations to iSAM + for (size_t i = 1; i < poses.size(); ++i) { + + // Add factors for each landmark observation + NonlinearFactorGraph graph; + for (size_t j = 0; j < points.size(); ++j) { + graph.add( + GenericProjectionFactor + (z[i][j], noise,Symbol('x', i), Symbol('l', j), K) + ); + } + + // Add an initial guess for the current pose + Values initialEstimate; + initialEstimate.insert(Symbol('x', i), initial_x[i]); + + // Update iSAM with the new factors + isam.update(graph, initialEstimate); + } + +The remainder of the code illustrates a typical iSAM loop: + +#. Create factors for new measurements. Here, in lines 9-18, a small + ***NonlinearFactorGraph*** is created to hold the new factors of type + ***GenericProjectionFactor***. +#. Create an initial estimate for all newly introduced variables. In + this small example, all landmarks have been observed in frame 1 and + hence the only new variable that needs to be initialized at each time + step is the new pose. This is done in lines 20-22. Note we assume a + good initial estimate is available as *initial\_x[i]*. +#. Finally, we call *isam.update()*, which takes the factors and initial + estimates, and incrementally updates the solution, which is available + through the method *isam.estimate()*, if desired. diff --git a/docs/build/html/_sources/index.rst.txt b/docs/build/html/_sources/index.rst.txt new file mode 100644 index 0000000000..de5cfd5f11 --- /dev/null +++ b/docs/build/html/_sources/index.rst.txt @@ -0,0 +1,43 @@ +.. GTSAM documentation master file, created by + sphinx-quickstart on Tue Jul 21 14:09:31 2020. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +GTSAM +====== + +GTSAM 4.0 is a BSD-licensed C++ library that implements sensor fusion for +robotics and computer vision applications, including +SLAM (Simultaneous Localization and Mapping), VO (Visual Odometry), +and SFM (Structure from Motion). +It uses factor graphs and Bayes networks as the underlying computing paradigm +rather than sparse matrices to optimize for the most probable configuration +or an optimal plan. +Coupled with a capable sensor front-end (not provided here), GTSAM powers +many impressive autonomous systems, in both academia and industry. + + +.. toctree:: + :caption: Getting started + :hidden: + + Home + Installing + Building + + +.. toctree:: + :caption: Contents + :hidden: + + Tutorials + Bindings + C++ API <_static/doxygen/html/modules.html#http://> + +.. (JLBC note: Do not remove the #http:// above, it's the only way I found to allow that link to be included in the TOC). + + +Indices and tables +================== + +* :ref:`genindex` diff --git a/docs/build/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/build/html/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000000..81415803ec --- /dev/null +++ b/docs/build/html/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/docs/build/html/_static/basic.css b/docs/build/html/_static/basic.css new file mode 100644 index 0000000000..30fee9d0f7 --- /dev/null +++ b/docs/build/html/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/build/html/_static/css/badge_only.css b/docs/build/html/_static/css/badge_only.css new file mode 100644 index 0000000000..c718cee441 --- /dev/null +++ b/docs/build/html/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/docs/build/html/_static/css/fonts/Roboto-Slab-Bold.woff b/docs/build/html/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 0000000000..6cb6000018 Binary files /dev/null and b/docs/build/html/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/docs/build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 b/docs/build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 0000000000..7059e23142 Binary files /dev/null and b/docs/build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/docs/build/html/_static/css/fonts/Roboto-Slab-Regular.woff b/docs/build/html/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 0000000000..f815f63f99 Binary files /dev/null and b/docs/build/html/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/docs/build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 b/docs/build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 0000000000..f2c76e5bda Binary files /dev/null and b/docs/build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/docs/build/html/_static/css/fonts/fontawesome-webfont.eot b/docs/build/html/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000000..e9f60ca953 Binary files /dev/null and b/docs/build/html/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/docs/build/html/_static/css/fonts/fontawesome-webfont.svg b/docs/build/html/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000000..855c845e53 --- /dev/null +++ b/docs/build/html/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/build/html/_static/css/fonts/fontawesome-webfont.ttf b/docs/build/html/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000000..35acda2fa1 Binary files /dev/null and b/docs/build/html/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/docs/build/html/_static/css/fonts/fontawesome-webfont.woff b/docs/build/html/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000000..400014a4b0 Binary files /dev/null and b/docs/build/html/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/docs/build/html/_static/css/fonts/fontawesome-webfont.woff2 b/docs/build/html/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000000..4d13fc6040 Binary files /dev/null and b/docs/build/html/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/docs/build/html/_static/css/fonts/lato-bold-italic.woff b/docs/build/html/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 0000000000..88ad05b9ff Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-bold-italic.woff differ diff --git a/docs/build/html/_static/css/fonts/lato-bold-italic.woff2 b/docs/build/html/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 0000000000..c4e3d804b5 Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/docs/build/html/_static/css/fonts/lato-bold.woff b/docs/build/html/_static/css/fonts/lato-bold.woff new file mode 100644 index 0000000000..c6dff51f06 Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-bold.woff differ diff --git a/docs/build/html/_static/css/fonts/lato-bold.woff2 b/docs/build/html/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 0000000000..bb195043cf Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-bold.woff2 differ diff --git a/docs/build/html/_static/css/fonts/lato-normal-italic.woff b/docs/build/html/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 0000000000..76114bc033 Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-normal-italic.woff differ diff --git a/docs/build/html/_static/css/fonts/lato-normal-italic.woff2 b/docs/build/html/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 0000000000..3404f37e2e Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/docs/build/html/_static/css/fonts/lato-normal.woff b/docs/build/html/_static/css/fonts/lato-normal.woff new file mode 100644 index 0000000000..ae1307ff5f Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-normal.woff differ diff --git a/docs/build/html/_static/css/fonts/lato-normal.woff2 b/docs/build/html/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 0000000000..3bf9843328 Binary files /dev/null and b/docs/build/html/_static/css/fonts/lato-normal.woff2 differ diff --git a/docs/build/html/_static/css/theme.css b/docs/build/html/_static/css/theme.css new file mode 100644 index 0000000000..19a446a0e7 --- /dev/null +++ b/docs/build/html/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/docs/build/html/_static/doctools.js b/docs/build/html/_static/doctools.js new file mode 100644 index 0000000000..d06a71d751 --- /dev/null +++ b/docs/build/html/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/docs/build/html/_static/documentation_options.js b/docs/build/html/_static/documentation_options.js new file mode 100644 index 0000000000..0a85d848e7 --- /dev/null +++ b/docs/build/html/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '4.0.2', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/docs/build/html/_static/file.png b/docs/build/html/_static/file.png new file mode 100644 index 0000000000..a858a410e4 Binary files /dev/null and b/docs/build/html/_static/file.png differ diff --git a/docs/build/html/_static/jquery.js b/docs/build/html/_static/jquery.js new file mode 100644 index 0000000000..c4c6022f29 --- /dev/null +++ b/docs/build/html/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/build/html/_static/js/html5shiv.min.js b/docs/build/html/_static/js/html5shiv.min.js new file mode 100644 index 0000000000..cd1c674f5e --- /dev/null +++ b/docs/build/html/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/build/html/_static/js/theme.js b/docs/build/html/_static/js/theme.js new file mode 100644 index 0000000000..1fddb6ee4a --- /dev/null +++ b/docs/build/html/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/docs/build/html/_static/minus.png b/docs/build/html/_static/minus.png new file mode 100644 index 0000000000..d96755fdaf Binary files /dev/null and b/docs/build/html/_static/minus.png differ diff --git a/docs/build/html/_static/plus.png b/docs/build/html/_static/plus.png new file mode 100644 index 0000000000..7107cec93a Binary files /dev/null and b/docs/build/html/_static/plus.png differ diff --git a/docs/build/html/_static/pygments.css b/docs/build/html/_static/pygments.css new file mode 100644 index 0000000000..84ab3030a9 --- /dev/null +++ b/docs/build/html/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/build/html/_static/searchtools.js b/docs/build/html/_static/searchtools.js new file mode 100644 index 0000000000..7918c3fab3 --- /dev/null +++ b/docs/build/html/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/docs/build/html/_static/sphinx_highlight.js b/docs/build/html/_static/sphinx_highlight.js new file mode 100644 index 0000000000..8a96c69a19 --- /dev/null +++ b/docs/build/html/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html new file mode 100644 index 0000000000..41c119011d --- /dev/null +++ b/docs/build/html/genindex.html @@ -0,0 +1,115 @@ + + + + + + Index — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ +
+ + +
+
+
+ +
+ +
+

© Copyright 2020, The GTSAM authors.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/iSAM.html b/docs/build/html/iSAM.html new file mode 100644 index 0000000000..3946e32fff --- /dev/null +++ b/docs/build/html/iSAM.html @@ -0,0 +1,195 @@ + + + + + + + iSAM: Incremental Smoothing and Mapping — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

iSAM: Incremental Smoothing and Mapping

+

GTSAM provides an incremental inference algorithm based on a more +advanced graphical model, the Bayes tree, which is kept up to date by +the iSAM algorithm (incremental Smoothing and Mapping, see Kaess et +al. (2008); Kaess et +al. (2012) for an in-depth treatment). For +mobile robots operating in real-time it is important to have access to +an updated map as soon as new sensor measurements come in. iSAM keeps +the map up-to-date in an efficient manner.

+

Listing 7 shows how to use iSAM in a simple +visual SLAM example. In line 1-2 we create a *NonlinearISAM* object +which will relinearize and reorder the variables every 3 steps. The +corect value for this parameter depends on how non-linear your problem +is and how close you want to be to gold-standard solution at every step. +In iSAM 2.0, this parameter is not needed, as iSAM2 automatically +determines when linearization is needed and for which variables.

+

The example involves eight 3D points that are seen from eight successive +camera poses. Hence in the first step -which is omitted here- all eight +landmarks and the first pose are properly initialized. In the code this +is done by perturbing the known ground truth, but in a real application +great care is needed to properly initialize poses and landmarks, +especially in a monocular sequence.

+
int relinearizeInterval = 3;
+NonlinearISAM isam(relinearizeInterval);
+
+// ... first frame initialization omitted ...
+
+// Loop over the different poses, adding the observations to iSAM
+for (size_t i = 1; i < poses.size(); ++i) {
+
+  // Add factors for each landmark observation
+  NonlinearFactorGraph graph;
+  for (size_t j = 0; j < points.size(); ++j) {
+    graph.add(
+      GenericProjectionFactor<Pose3, Point3, Cal3_S2>
+        (z[i][j], noise,Symbol('x', i), Symbol('l', j), K)
+    );
+  }
+
+  // Add an initial guess for the current pose
+  Values initialEstimate;
+  initialEstimate.insert(Symbol('x', i), initial_x[i]);
+
+  // Update iSAM with the new factors
+  isam.update(graph, initialEstimate);
+ }
+
+
+

The remainder of the code illustrates a typical iSAM loop:

+
    +
  1. Create factors for new measurements. Here, in lines 9-18, a small +*NonlinearFactorGraph* is created to hold the new factors of type +*GenericProjectionFactor<Pose3, Point3, Cal3_S2>*.

  2. +
  3. Create an initial estimate for all newly introduced variables. In +this small example, all landmarks have been observed in frame 1 and +hence the only new variable that needs to be initialized at each time +step is the new pose. This is done in lines 20-22. Note we assume a +good initial estimate is available as initial_x[i].

  4. +
  5. Finally, we call isam.update(), which takes the factors and initial +estimates, and incrementally updates the solution, which is available +through the method isam.estimate(), if desired.

  6. +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/index.html b/docs/build/html/index.html new file mode 100644 index 0000000000..a50882e63f --- /dev/null +++ b/docs/build/html/index.html @@ -0,0 +1,136 @@ + + + + + + + GTSAM — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

GTSAM

+

GTSAM 4.0 is a BSD-licensed C++ library that implements sensor fusion for +robotics and computer vision applications, including +SLAM (Simultaneous Localization and Mapping), VO (Visual Odometry), +and SFM (Structure from Motion). +It uses factor graphs and Bayes networks as the underlying computing paradigm +rather than sparse matrices to optimize for the most probable configuration +or an optimal plan. +Coupled with a capable sensor front-end (not provided here), GTSAM powers +many impressive autonomous systems, in both academia and industry.

+
+
+
+
+
+
+

Indices and tables

+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv new file mode 100644 index 0000000000..808adde6ba Binary files /dev/null and b/docs/build/html/objects.inv differ diff --git a/docs/build/html/search.html b/docs/build/html/search.html new file mode 100644 index 0000000000..eafcf45d05 --- /dev/null +++ b/docs/build/html/search.html @@ -0,0 +1,130 @@ + + + + + + Search — GTSAM 4.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2020, The GTSAM authors.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js new file mode 100644 index 0000000000..c10c9b4ba5 --- /dev/null +++ b/docs/build/html/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["Bindings", "Building", "CppExamples", "FactorGraphs", "Installing", "KeyConcepts", "LandmarkBasedSLAM", "MatlabExamples", "ModelingRobotMotion", "MoreApplications", "Overview", "PoseSLAM", "PythonExamples", "RobotLocalization", "StructureFromMotion", "TutorialCreateNewFactor", "Tutorials", "iSAM", "index"], "filenames": ["Bindings.rst", "Building.rst", "CppExamples.rst", "FactorGraphs.rst", "Installing.rst", "KeyConcepts.rst", "LandmarkBasedSLAM.rst", "MatlabExamples.rst", "ModelingRobotMotion.rst", "MoreApplications.rst", "Overview.rst", "PoseSLAM.rst", "PythonExamples.rst", "RobotLocalization.rst", "StructureFromMotion.rst", "TutorialCreateNewFactor.rst", "Tutorials.rst", "iSAM.rst", "index.rst"], "titles": ["Bindings", "Building", "C++ Examples", "Factor Graphs", "Installing", "Key Concepts", "Landmark-based SLAM", "Matlab Examples", "Modeling Robot Motion", "More Applications", "Overview", "PoseSLAM", "Python Examples", "Robot Localization", "Structure from Motion", "Creating new factor and variable types", "Tutorials", "iSAM: Incremental Smoothing and Mapping", "GTSAM"], "terms": {"gtsam": [0, 1, 6, 9, 10, 11, 13, 14, 15, 16, 17], "provid": [0, 6, 8, 9, 10, 11, 13, 14, 17, 18], "two": [0, 6, 8, 13, 14], "nativ": 0, "c": [0, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18], "11": [0, 6, 8, 11, 13], "librari": [0, 8, 10, 18], "gtsam_unst": 0, "both": [0, 6, 9, 10, 11, 14, 18], "ar": [0, 3, 6, 8, 9, 10, 11, 13, 14, 15, 17], "also": [0, 6, 8, 9, 10, 11, 13, 14], "wrap": [0, 11], "other": [0, 6, 9], "languag": 0, "easi": [0, 9], "prototyp": [0, 10], "write": 0, "me": [0, 10], "from": [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18], "http": 1, "org": 1, "some": [2, 6, 7, 11, 12, 15], "select": [2, 7, 11, 12], "sourc": [2, 7, 11, 12], "code": [2, 6, 7, 8, 9, 11, 12, 13, 14, 17], "let": [3, 8], "u": [3, 6, 8, 9, 13], "start": [3, 6], "one": [3, 8, 9, 11, 13, 15], "page": 3, "primer": 3, "which": [3, 6, 8, 9, 10, 11, 13, 14, 15, 17], "wai": [3, 9], "replac": 3, "excel": 3, "detail": [3, 6, 9, 11, 13], "review": 3, "kschischang": 3, "et": [3, 6, 9, 13, 17], "al": [3, 6, 9, 13, 17], "2001": 3, "loelig": 3, "2004": [3, 9], "imag": [3, 6, 8, 9, 11, 13, 14], "2": [3, 6, 8, 9, 11, 13, 14, 17], "_user": [3, 6, 8, 9, 11, 13, 14], "_dellaert": [3, 6, 8, 9, 11, 13, 14], "_git": [3, 6, 8, 9, 11, 13, 14], "_github": [3, 6, 8, 9, 11, 13, 14], "_doc": [3, 6, 8, 9, 11, 13, 14], "_imag": [3, 6, 8, 9, 11, 13, 14], "_hmm": 3, "png": [3, 6, 8, 9, 11, 13, 14], "figur": [3, 6, 8, 9, 11, 13, 14], "1": [3, 6, 8, 11, 13, 14, 15, 17], "an": [3, 6, 8, 9, 11, 13, 14, 15, 16, 17, 18], "hmm": [3, 16], "unrol": 3, "over": [3, 8, 11, 13, 14, 17], "three": [3, 6, 8, 13], "time": [3, 8, 11, 13, 14, 15, 17], "step": [3, 13, 17], "repres": [3, 8, 10, 11], "bay": [3, 10, 17, 18], "net": 3, "show": [3, 6, 11, 13, 14, 17], "network": [3, 10, 18], "hidden": [3, 6, 9], "markov": [3, 6, 8, 9], "model": [3, 9, 10, 11, 13, 15, 16, 17], "In": [3, 6, 8, 9, 10, 11, 13, 14, 17], "each": [3, 8, 13, 17], "node": [3, 8], "i": [3, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18], "associ": [3, 8, 9, 14], "condit": [3, 13], "densiti": [3, 8, 13], "top": 3, "chain": [3, 6, 8], "encod": [3, 8, 14], "prior": [3, 6, 8, 10, 11, 13], "p": [3, 8, 13, 14], "left": [3, 8, 11, 13, 14], "x_": [3, 6, 8, 11, 13, 14], "right": [3, 8, 11, 13, 14], "transit": 3, "probabl": [3, 8, 11, 13, 18], "middl": [3, 8, 13], "3": [3, 6, 8, 11, 13, 17], "wherea": [3, 10, 13], "measur": [3, 6, 8, 9, 10, 11, 14, 15, 16, 17], "z_": [3, 11, 13, 14], "t": [3, 6, 8, 11, 13], "depend": [3, 6, 13, 17], "onli": [3, 6, 8, 9, 10, 11, 13, 17], "state": [3, 10], "given": [3, 6, 8, 11, 13, 14], "known": [3, 6, 13, 14, 15, 17], "we": [3, 6, 8, 9, 11, 13, 14, 17], "interest": 3, "sequenc": [3, 17], "maxim": 3, "posterior": [3, 16], "sinc": 3, "proport": [3, 13], "product": 3, "six": 3, "deriv": [3, 8, 10, 11, 13, 15], "likelihood": [3, 13], "defin": [3, 8, 11, 16], "l": [3, 6, 13, 14, 17], "z": [3, 8, 14, 15, 17], "propto": [3, 8], "fg": 3, "observ": [3, 6, 9, 14, 17], "thi": [3, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17], "motiv": 3, "differ": [3, 6, 8, 11, 17], "graphic": [3, 9, 10, 11, 13, 17], "unknown": [3, 10, 13, 15], "variabl": [3, 6, 8, 10, 13, 16, 17], "connect": [3, 6, 10], "probabilist": [3, 10], "inform": [3, 8, 10], "them": [3, 11, 13], "To": [3, 6, 11, 15], "do": [3, 6, 8, 9, 11], "maximum": [3, 8], "posteriori": [3, 8], "map": [3, 6, 8, 9, 10, 11, 13, 16, 18], "infer": [3, 9, 16, 17], "f": [3, 8, 13, 14, 15], "prod": 3, "f_": [3, 8, 11, 13], "mathcal": 3, "x": [3, 6, 8, 13, 14, 15, 17], "_": [3, 11, 13], "e": [3, 9, 11, 13], "valu": [3, 6, 11, 13, 16, 17], "It": [3, 8, 10, 13, 18], "should": [3, 8, 13], "clear": [3, 11], "subset": [3, 9, 11], "exampl": [3, 8, 9, 10, 11, 13, 14, 16, 17], "below": [3, 8, 9, 11], "us": [3, 6, 8, 9, 10, 14, 15, 16, 17, 18], "more": [3, 6, 8, 10, 13, 15, 16, 17], "complex": [3, 10], "problem": [3, 8, 9, 10, 11, 14, 15, 17], "robot": [3, 6, 9, 10, 11, 16, 17, 18], "12": [6, 8, 11, 13], "_factorgraph4": 6, "10": [6, 11, 14], "factor": [6, 9, 10, 11, 14, 16, 17, 18], "graph": [6, 9, 10, 13, 14, 16, 17, 18], "explicitli": [6, 9], "build": [6, 11], "locat": [6, 11], "introduc": [6, 17], "second": 6, "type": [6, 8, 11, 13, 14, 17], "besid": [6, 11], "pose": [6, 8, 9, 13, 14, 15, 16, 17], "shown": [6, 8, 9, 11, 14], "typic": [6, 8, 9, 10, 15, 17], "odometri": [6, 8, 11, 13, 16, 18], "multipl": [6, 8], "induc": 6, "binari": [6, 8, 11], "addit": [6, 10, 11, 13], "ha": [6, 9, 13], "usual": [6, 8], "13": [6, 8], "_example2": 6, "The": [6, 8, 9, 10, 11, 13, 14, 15, 17], "optim": [6, 13, 14, 16, 18], "result": [6, 8, 10, 11, 13], "along": [6, 11, 14], "covari": [6, 8, 11, 13, 14], "ellips": [6, 11, 13, 14], "green": [6, 11], "blue": [6, 11], "trajectori": [6, 8, 9, 11], "red": [6, 9, 11], "sight": 6, "cyan": 6, "can": [6, 8, 9, 10, 11, 13], "creat": [6, 11, 13, 14, 16, 17], "matlab": [6, 9, 10, 13, 14, 16], "list": [6, 8, 11, 13, 14, 17], "5": [6, 8, 11, 13, 14], "As": [6, 11, 14], "befor": [6, 8, 11, 14], "line": [6, 8, 11, 13, 17], "8": [6, 8, 11, 13, 14], "18": [6, 8, 11, 13, 17], "now": [6, 11, 13, 14], "familiar": [6, 10], "howev": [6, 10], "20": [6, 11, 14, 17], "25": 6, "new": [6, 13, 17], "case": [6, 8, 13], "bear": 6, "rang": [6, 11, 13], "contain": [6, 8, 11, 13], "add": [6, 8, 11, 13, 14, 17], "nonlinearfactorgraph": [6, 8, 11, 17], "i1": 6, "i2": 6, "i3": 6, "j1": 6, "j2": 6, "priormean": [6, 8, 11], "pose2": [6, 8, 11, 13], "0": [6, 8, 11, 13, 17, 18], "origin": [6, 9, 14], "priornois": [6, 8, 11], "noisemodel": [6, 8, 11, 13, 14, 15], "diagon": [6, 8, 11, 13], "sigma": [6, 8, 11, 13, 14], "directli": 6, "priorfactorpose2": [6, 11], "odometrynois": [6, 8], "betweenfactorpose2": [6, 11], "degre": 6, "pi": [6, 11], "180": [6, 11], "brnois": 6, "bearingrangefactor2d": 6, "rot2": 6, "45": 6, "sqrt": 6, "90": 6, "unexplain": 6, "4": [6, 8, 11, 13, 18], "6": [6, 11, 13, 14, 15], "here": [6, 14, 15, 17, 18], "integ": 6, "function": [6, 8, 11, 13, 15], "address": 6, "all": [6, 8, 9, 10, 11, 13, 14, 17], "ke": 6, "y": [6, 8, 13], "just": [6, 8, 11, 13], "typedef": 6, "size_t": [6, 17], "32": 6, "64": 6, "bit": 6, "your": [6, 10, 11, 15, 17], "platform": 6, "have": [6, 8, 9, 11, 13, 15, 17], "number": [6, 8, 15], "continu": [6, 8, 9], "thei": [6, 8, 9], "uniqu": 6, "within": [6, 11], "For": [6, 9, 11, 13, 17], "help": [6, 8, 9, 10, 13], "you": [6, 8, 9, 10, 11, 13, 14, 15, 17], "larg": [6, 9, 11], "far": [6, 9], "apart": 6, "space": [6, 9], "possibl": [6, 10, 11], "so": 6, "don": 6, "think": [6, 8], "about": [6, 8], "point": [6, 8, 9, 14, 15, 17], "arbitrari": 6, "offset": 6, "simpli": [6, 8, 13, 14], "charact": [6, 14], "index": [6, 14, 18], "indic": [6, 11, 13], "doe": [6, 11, 14], "matter": 6, "abov": [6, 8, 9, 11, 13], "readili": 6, "appar": [6, 13], "l_": 6, "better": 6, "local": [6, 8, 9, 10, 11, 16, 18], "examin": [6, 11], "actual": [6, 8, 13], "numer": 6, "reveal": 6, "magic": 6, "l1": 6, "l2": 6, "x1": [6, 8, 13], "8e": [6, 8], "16": [6, 8, 13, 14], "1e": [6, 8, 13], "17": [6, 8, 9, 13], "5e": [6, 8, 13], "x2": [6, 8, 13], "6e": [6, 13], "x3": [6, 8, 13], "15": [6, 8, 9, 11, 13], "inde": [6, 9, 13], "gener": [6, 11], "automat": [6, 17], "detect": 6, "print": [6, 8], "method": [6, 9, 10, 17], "class": [6, 8, 11, 13, 14], "render": [6, 8, 14], "human": 6, "readabl": 6, "form": 6, "etc": [6, 11], "rather": [6, 8, 14, 18], "than": [6, 8, 11, 14, 15, 18], "unwieldi": 6, "extend": [6, 11], "most": [6, 9, 11, 13, 18], "where": [6, 8, 9, 13, 14], "14": [6, 8, 13, 14], "_littlerobot": 6, "100": [6, 11], "30": [6, 8], "produc": [6, 11, 13], "gtsam_exampl": 6, "planarslamexample_graph": 6, "m": [6, 13], "come": [6, 15, 17], "slightli": [6, 8, 15], "read": [6, 13, 16], "file": [6, 11], "clutter": 6, "margin": [6, 8, 9, 11, 13], "119": 6, "multivari": 6, "517": 6, "less": [6, 11, 13], "_victoria": 6, "small": [6, 8, 9, 11, 17], "section": [6, 9, 10, 13, 14], "tree": [6, 9, 17], "laser": [6, 11, 13], "finder": [6, 11, 13], "scan": 6, "data": [6, 14], "record": 6, "sydnei": 6, "": [6, 8], "victoria": 6, "park": 6, "dataset": 6, "due": [6, 11], "jose": 6, "guivant": 6, "well": [6, 9, 10], "collect": [6, 14], "truck": 6, "equip": 6, "matric": [6, 8, 11, 13, 18], "were": 6, "comput": [6, 8, 10, 11, 18], "veri": [6, 8, 11, 13, 14], "effici": [6, 9, 10, 17], "explain": [6, 8, 9, 13], "kaess": [6, 10, 11, 13, 16, 17], "dellaert": [6, 9, 13, 16], "2009": [6, 10], "exact": 6, "smaller": [6, 13], "obtain": [6, 13], "our": [6, 8, 9, 10], "fast": 6, "algorithm": [6, 10, 17], "coincid": 6, "full": [6, 11, 16], "invers": 6, "orang": 6, "mostli": 6, "much": [6, 11, 13], "conserv": 6, "estim": [6, 8, 9, 10, 11, 17], "earlier": 6, "work": [6, 10, 11, 14], "2008": [6, 17], "dive": 8, "slam": [8, 10, 11, 14, 15, 16, 17, 18], "consid": [8, 13], "simpler": [8, 10], "done": [8, 11, 13, 14, 17], "gentl": [8, 9], "introduct": [8, 9, 16], "_factorgraph": 8, "simpl": [8, 13, 17], "There": 8, "open": 8, "circl": [8, 14], "unari": [8, 11, 16], "first": [8, 11, 17], "knowledg": [8, 10], "relat": 8, "success": [8, 9, 11, 17], "respect": [8, 13], "o_": 8, "follow": [8, 10, 11, 13, 14, 15], "includ": [8, 9, 10, 11, 13, 18], "empti": 8, "nonlinear": [8, 11, 13], "gaussian": [8, 11, 13], "x_1": 8, "shared_ptr": [8, 11, 13], "vector3": [8, 11], "priorfactor": [8, 11], "betweenfactor": [8, 11, 15], "instanc": [8, 13], "templat": [8, 11, 13], "subfold": 8, "Its": 8, "constructor": [8, 11, 13], "take": [8, 9, 17], "kei": [8, 13, 14, 16], "mean": [8, 11], "nois": [8, 11, 13, 14, 15, 17], "specifi": [8, 13, 14, 15], "standard": [8, 11, 13, 14, 17], "deviat": [8, 11, 13], "7": [8, 11, 13, 17], "cm": 8, "posit": [8, 11, 13, 14], "radian": 8, "orient": [8, 11, 13], "note": [8, 11, 13, 14, 17], "return": [8, 13], "share": [8, 13], "pointer": [8, 13], "anticip": 8, "same": [8, 9, 11, 14, 15], "mani": [8, 10, 13, 18], "similarli": 8, "yet": 8, "anoth": [8, 10], "again": [8, 11], "when": [8, 9, 10, 11, 13, 17], "run": [8, 11], "make": [8, 14, 15], "odometryexampl": 8, "command": [8, 11], "prompt": [8, 11], "out": [8, 9], "size": [8, 11, 17], "At": 8, "instruct": 8, "emphas": 8, "import": [8, 13, 14, 17], "design": 8, "idea": 8, "underli": [8, 18], "its": [8, 9], "embodi": 8, "joint": 8, "distribut": [8, 15], "entir": 8, "last": [8, 9, 13], "smooth": [8, 10, 16], "view": [8, 13, 14], "world": [8, 11, 16], "give": 8, "name": [8, 9, 11], "later": 8, "document": 8, "talk": 8, "how": [8, 11, 13, 14, 17], "filter": [8, 16], "often": [8, 10, 13, 15], "want": [8, 13, 17], "increment": [8, 16], "A": [8, 9, 10, 11, 16], "specif": [8, 9, 14], "correspond": [8, 9, 11, 13, 14], "factorgraph": 8, "ever": [8, 13], "solut": [8, 10, 13, 17], "separ": 8, "evalu": [8, 13], "commonli": 8, "error": [8, 11, 14, 15], "particular": [8, 13, 14], "latter": 8, "confus": 8, "begin": [8, 13], "user": [8, 10], "rememb": 8, "took": 8, "approach": 8, "mathemat": 8, "object": [8, 11, 17], "immut": 8, "appli": 8, "notat": [8, 11, 13], "impli": 8, "modifi": 8, "initi": [8, 11, 14, 17], "find": 8, "assign": [8, 13], "deliber": 8, "inaccur": 8, "insert": [8, 17], "levenberg": [8, 11], "marquardt": [8, 11], "levenbergmarquardtoptim": [8, 11], "style": 8, "call": [8, 9, 11, 17], "default": 8, "paramet": [8, 14, 17], "set": [8, 14, 15], "reason": 8, "why": [8, 13], "need": [8, 11, 17], "perform": [8, 9], "becaus": [8, 9, 13], "involv": [8, 15, 17], "possibli": [8, 13], "minim": 8, "squar": [8, 11, 15], "relev": 8, "output": [8, 11], "final": [8, 9, 13, 17], "7e": 8, "9": [8, 11, 17], "19": [8, 13], "4e": [8, 13], "seen": [8, 17], "subject": 8, "toler": 8, "ground": [8, 14, 17], "truth": [8, 14, 17], "recov": [8, 13, 14], "calcul": [8, 11, 14], "matrix": [8, 11, 13, 14], "after": [8, 11], "incorpor": 8, "recogn": [8, 11], "mu": 8, "togeth": 8, "approxim": 8, "even": [8, 10], "argument": [8, 13], "true": [8, 11], "queri": 8, "cout": 8, "precis": 8, "n": 8, "marginalcovari": 8, "endl": 8, "09": 8, "47": 8, "33": 8, "9e": 8, "01": [8, 11], "02": 8, "37": 8, "06": 8, "03": 8, "what": [8, 9], "see": [8, 9, 11, 13, 14, 15, 17], "move": [8, 9, 11], "uncertainti": [8, 11, 13], "dimens": 8, "grow": [8, 13], "without": [8, 13, 15], "bound": [8, 13], "theta": [8, 13], "compon": 8, "becom": [8, 11], "correl": [8, 13], "fact": [8, 13], "interpret": 8, "rel": 8, "coordin": [8, 11], "absolut": 8, "intern": 8, "chang": 8, "while": [9, 13], "discuss": [9, 11], "thing": [9, 14], "too": [9, 10], "survei": 9, "expect": [9, 13, 15], "did": 9, "_beij": 9, "beij": 9, "span": 9, "black": 9, "remain": 9, "loop": [9, 14, 16, 17], "close": [9, 11, 17], "constraint": [9, 10, 16], "precondition": 9, "precondit": 9, "pcg": 9, "solv": [9, 10, 15], "scale": 9, "direct": [9, 10, 14], "popular": [9, 11], "literatur": 9, "exhibit": 9, "quadrat": 9, "converg": 9, "quit": [9, 10], "spars": [9, 10, 18], "requir": 9, "lot": [9, 13], "storag": 9, "elimin": 9, "order": 9, "found": 9, "contrast": [9, 13], "iter": [9, 10], "access": [9, 11, 17], "memori": 9, "footprint": 9, "suffer": 9, "poor": 9, "subgraph": 9, "2010": 9, "jian": [9, 10], "2011": 9, "combin": 9, "advantag": 9, "identifi": 9, "sub": [9, 13], "easili": [9, 11], "part": [9, 11, 14], "planar": 9, "ani": [9, 11, 13], "substructur": 9, "vision": [9, 10, 11, 18], "base": [9, 10, 14, 16, 17], "sens": 9, "abbrevi": 9, "vo": [9, 18], "g": [9, 11, 13, 14], "nist\u00e9r": 9, "between": [9, 10, 11, 15], "track": 9, "featur": [9, 14], "taken": 9, "camera": [9, 14, 17], "mount": 9, "rigidli": 9, "davison": 9, "2003": 9, "variant": 9, "3d": [9, 14, 16, 17], "through": [9, 11, 17], "either": [9, 13, 15], "around": [9, 14], "hand": [9, 10, 16], "particularli": 9, "isam": [9, 16], "adapt": 9, "back": 9, "end": [9, 13, 14, 18], "scenario": 9, "recurs": 9, "kept": [9, 17], "avail": [9, 17], "got": 9, "gt": 9, "instead": [9, 11, 13, 15], "few": [9, 11], "speak": 9, "singl": 9, "recent": 9, "formul": 9, "wa": [9, 10, 11, 14], "smith": 9, "1988": 9, "limit": [9, 10], "structur": [9, 10, 16, 18], "except": [9, 13, 14], "koller": 10, "friedman": 10, "suit": 10, "simultan": [10, 11, 13, 18], "motion": [10, 16, 18], "sfm": [10, 14, 15, 18], "might": [10, 11, 13], "acycl": 10, "bipartit": 10, "consist": 10, "random": 10, "those": 10, "illustr": [10, 11, 13, 17], "toolbox": 10, "stand": 10, "georgia": 10, "tech": [10, 16], "bsd": [10, 18], "licens": [10, 18], "develop": [10, 11], "institut": 10, "technologi": 10, "myself": 10, "my": 10, "student": 10, "collabor": 10, "art": 10, "interfac": [10, 13, 16], "allow": [10, 11, 15], "rapid": [10, 11], "visual": [10, 11, 14, 16, 17, 18], "interact": 10, "exploit": 10, "sparsiti": 10, "computation": 10, "relationship": 10, "henc": [10, 17], "implement": [10, 13, 15, 18], "reduc": 10, "dens": 10, "handl": [10, 13], "regardless": 10, "download": 10, "latest": 10, "version": [10, 13, 16], "github": 10, "repo": 10, "made": [10, 11], "effort": 10, "elsewher": 10, "doru": 10, "balcan": 10, "chri": 10, "beall": 10, "alex": 10, "cunningham": 10, "alireza": 10, "fathi": 10, "eohan": 10, "georg": 10, "viorela": 10, "ila": 10, "yong": 10, "dian": 10, "michael": [10, 11, 16], "kai": 10, "ni": 10, "carlo": 10, "nieto": 10, "dui": 10, "nguyen": 10, "ta": 10, "manohar": 10, "paluri": 10, "christian": 10, "potthast": 10, "richard": 10, "robert": 10, "grant": 10, "schindler": 10, "stephen": 10, "william": 10, "paritosh": 10, "mohan": 10, "manual": [10, 11], "thank": 10, "hard": 10, "simplest": 11, "instanti": 11, "avoid": 11, "explicit": [11, 15], "environ": [11, 14], "goal": 11, "incom": 11, "sensor": [11, 17, 18], "durrant": 11, "whyte": 11, "bailei": 11, "2006": [11, 13], "wheel": 11, "plane": 11, "2d": [11, 14, 16], "re": 11, "visit": 11, "previous": 11, "explor": 11, "_factorgraph3": 11, "m_pi_2": 11, "travel": 11, "ad": [11, 13, 17], "refer": [11, 13], "But": 11, "event": 11, "geometr": 11, "_example1": 11, "These": [11, 13], "area": 11, "68": [11, 13], "26": [11, 13], "mass": [11, 13], "1d": 11, "would": [11, 13], "manner": [11, 17], "highest": 11, "furthest": 11, "awai": 11, "ty": 11, "global": [11, 13], "frame": [11, 13, 17], "next": [11, 13], "own": [11, 15], "custom": [11, 16], "although": 11, "outsid": 11, "scope": 11, "excerpt": 11, "equival": [11, 14], "almost": 11, "ident": 11, "syntax": 11, "alloc": 11, "heap": 11, "namespac": 11, "dot": 11, "sigmasclass": 11, "vector": [11, 13], "exist": [11, 13], "been": [11, 17], "hardcod": 11, "execut": 11, "who": 11, "byte": 11, "1x1": 11, "112": 11, "initialestim": [11, 17], "yield": [11, 13], "And": 11, "stop": 11, "1086": 11, "2631e": 11, "sum": [11, 15], "frac": [11, 13], "limits_": 11, "h_": 11, "_w100": 11, "plot": 11, "manhattan": 11, "ed": 11, "olson": 11, "abil": 11, "quicker": 11, "cycl": 11, "effortless": 11, "load2d": 11, "toro": 11, "datafil": 11, "findexampledatafil": 11, "w100": 11, "05": 11, "x_0": 11, "get": [11, 13], "optimizesaf": 11, "care": [11, 17], "updat": [11, 16, 17], "rotat": 11, "support": 11, "quaternion": 11, "via": [11, 13], "compil": [11, 15], "flag": 11, "gtsam_use_quaternion": 11, "_sphere2500": 11, "sphere": 11, "wrong": 11, "sphere2500": 11, "txt": 11, "load3d": 11, "2500": 11, "plot3dtrajectori": 11, "fals": 11, "nonlinearequalitypose3": 11, "atpose3": 11, "r": 11, "axi": [11, 14], "equal": 11, "serv": 13, "tutori": 13, "_factorgraph2": 13, "extern": 13, "real": [13, 16, 17], "imperfect": 13, "lead": 13, "quickli": 13, "accumul": 13, "least": 13, "absenc": 13, "omit": [13, 17], "Such": 13, "applic": [13, 16, 17, 18], "current": [13, 17], "gp": 13, "pre": 13, "presenc": 13, "ceil": 13, "light": 13, "1999": 13, "amus": 13, "built": 13, "noisemodelfactor1": [13, 15], "q": 13, "operatornam": 13, "exp": 13, "h": [13, 15], "alwai": 13, "like": 13, "unlik": 13, "peopl": 13, "backward": 13, "misl": 13, "unaryfactor": 13, "public": 13, "doubl": [13, 14], "mx_": 13, "my_": 13, "j": [13, 14, 17], "const": 13, "sharednoisemodel": 13, "evaluateerror": [13, 15], "boost": 13, "option": [13, 15], "none": 13, "finish": 13, "store": 13, "pass": 13, "superclass": 13, "everi": [13, 17], "importantli": 13, "whenev": 13, "jacobian": 13, "dimension": 13, "lbrack": 13, "arrai": [13, 14], "q_": 13, "rbrack": 13, "lll": 13, "fragment": 13, "unarynois": 13, "vector2": 13, "10cm": 13, "std": 13, "make_shar": 13, "m_": 13, "On": 13, "newli": [13, 17], "conveni": 13, "construct": 13, "enough": 13, "fulli": 13, "constrain": 13, "tie": 13, "If": 13, "exit": 13, "singular": 13, "exactli": [13, 14], "3e": 13, "2e": 13, "0083": 13, "0094": 13, "0031": 13, "0082": 13, "0071": 13, "0078": 13, "0011": 13, "018": 13, "compar": 13, "longer": 13, "evenli": 13, "_odometri": 13, "_local": 13, "b": [13, 14, 15], "immedi": 13, "keep": [13, 17], "angular": 13, "translat": 13, "increas": 13, "side": 13, "wonder": 13, "answer": 13, "demonstr": 13, "_cube": 14, "arrang": 14, "vertic": 14, "cube": 14, "center": 14, "color": 14, "ax": 14, "rgb": 14, "xyz": 14, "techniqu": 14, "reconstruct": 14, "unord": 14, "framework": 14, "project": 14, "reproject": 14, "p_": 14, "ij": 14, "k": [14, 17], "pose3": [14, 17], "point3": [14, 17], "parameter": 14, "point2": 14, "calibr": 14, "cal3_s2": [14, 17], "isotrop": 14, "measurementnoisesigma": 14, "length": 14, "genericprojectionfactorcal3_s2": 14, "symbol": [14, 16, 17], "assum": [14, 17], "alreadi": 14, "cell": 14, "genericprojectionfactor": [14, 17], "choos": 14, "radial": 14, "distort": 14, "landmark": [14, 16, 17], "denot": 14, "tricki": 14, "difficult": 14, "neither": 14, "bundl": 14, "adjust": 14, "intent": 14, "up": [14, 17], "geometri": 15, "subdirectori": 15, "modul": 15, "bearingfactor": 15, "directori": 15, "nonlinearfactor": 15, "noisemodelfactor": 15, "outlin": 15, "unwhitenederror": 15, "express": 15, "predict": 15, "noisemodelfactor2": 15, "noisemodelfactor3": 15, "noisemodelfactor4": 15, "noisemodelfactor5": 15, "noisemodelfactor6": 15, "task": 15, "easier": 15, "advanc": [15, 17], "linear": [15, 16, 17], "hessianfactor": 15, "jacobianfactor": 15, "2012": [16, 17], "report": 16, "frank": 16, "thorough": 16, "2017": 16, "articl": 16, "percept": 16, "overview": 16, "acknowledg": 16, "versu": 16, "non": [16, 17], "poseslam": 16, "closur": 16, "basic": 16, "Of": 16, "larger": 16, "conjug": 16, "gradient": 16, "fix": 16, "lag": 16, "discret": 16, "kalman": 16, "python": 16, "date": 17, "depth": 17, "treatment": 17, "mobil": 17, "oper": 17, "soon": 17, "nonlinearisam": 17, "relinear": 17, "reorder": 17, "corect": 17, "gold": 17, "isam2": 17, "determin": 17, "eight": 17, "properli": 17, "perturb": 17, "great": 17, "especi": 17, "monocular": 17, "int": 17, "relinearizeinterv": 17, "guess": 17, "initial_x": 17, "remaind": 17, "hold": 17, "22": 17, "good": 17, "desir": 17, "fusion": 18, "paradigm": 18, "configur": 18, "plan": 18, "coupl": 18, "capabl": 18, "front": 18, "power": 18, "impress": 18, "autonom": 18, "system": 18, "academia": 18, "industri": 18}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"bind": 0, "python": [0, 12], "wrapper": 0, "matlab": [0, 7, 11], "build": 1, "c": 2, "exampl": [2, 6, 7, 12], "kalman": 2, "filter": [2, 5, 9], "2d": 2, "slam": [2, 6, 9], "3d": [2, 11], "factor": [3, 5, 8, 13, 15], "graph": [3, 5, 8, 11], "instal": 4, "get": 4, "start": 4, "import": 4, "gtsam": [4, 8, 18], "your": 4, "project": 4, "write": 4, "first": 4, "program": 4, "kei": [5, 6], "concept": 5, "bayesian": 5, "infer": [5, 8, 13], "us": [5, 11, 13], "The": 5, "maximum": 5, "posteriori": 5, "problem": 5, "full": [5, 8, 13], "smooth": [5, 9, 17], "fix": [5, 9], "lag": [5, 9], "imu": 5, "preintegr": 5, "solver": 5, "bay": 5, "tree": 5, "landmark": 6, "base": 6, "basic": 6, "Of": 6, "symbol": 6, "A": 6, "larger": 6, "real": 6, "world": 6, "model": 8, "robot": [8, 13], "motion": [8, 14], "creat": [8, 15], "versu": 8, "valu": 8, "non": 8, "linear": 8, "optim": [8, 9, 11], "posterior": [8, 13], "more": 9, "applic": 9, "conjug": 9, "gradient": 9, "visual": 9, "odometri": 9, "discret": 9, "variabl": [9, 15], "hmm": 9, "overview": 10, "acknowledg": 10, "poseslam": 11, "loop": 11, "closur": 11, "constraint": 11, "interfac": 11, "read": 11, "pose": 11, "local": 13, "unari": 13, "measur": 13, "defin": 13, "custom": 13, "structur": 14, "from": 14, "new": 15, "type": 15, "tutori": 16, "isam": 17, "increment": 17, "map": 17, "indic": 18, "tabl": 18}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 60}, "alltitles": {"Bindings": [[0, "bindings"]], "Python wrapper": [[0, "python-wrapper"]], "Matlab wrapper": [[0, "matlab-wrapper"]], "Building": [[1, "building"]], "C++ Examples": [[2, "c-examples"]], "Kalman filter example": [[2, "kalman-filter-example"]], "2D SLAM example": [[2, "d-slam-example"]], "3D SLAM example": [[2, "id1"]], "Factor Graphs": [[3, "factor-graphs"]], "Installing": [[4, "installing"]], "Getting started": [[4, "getting-started"]], "Importing GTSAM in your projects": [[4, "importing-gtsam-in-your-projects"]], "Write your first GTSAM program": [[4, "write-your-first-gtsam-program"]], "Key Concepts": [[5, "key-concepts"]], "Bayesian inference using Factor graphs": [[5, "bayesian-inference-using-factor-graphs"]], "The Maximum-a-Posteriori Problem": [[5, "the-maximum-a-posteriori-problem"]], "Full smoothing problem": [[5, "full-smoothing-problem"]], "Fixed lag smoothing problem": [[5, "fixed-lag-smoothing-problem"]], "Filtering problem": [[5, "filtering-problem"]], "IMU Preintegration Factors": [[5, "imu-preintegration-factors"]], "Solvers": [[5, "solvers"]], "Bayes tree": [[5, "bayes-tree"]], "Landmark-based SLAM": [[6, "landmark-based-slam"]], "Basics": [[6, "basics"]], "Of Keys and Symbols": [[6, "of-keys-and-symbols"]], "A Larger Example": [[6, "a-larger-example"]], "A Real-World Example": [[6, "a-real-world-example"]], "Matlab Examples": [[7, "matlab-examples"]], "Modeling Robot Motion": [[8, "modeling-robot-motion"]], "Modeling with Factor Graphs": [[8, "modeling-with-factor-graphs"]], "Creating a Factor Graph": [[8, "creating-a-factor-graph"]], "Factor Graphs versus Values": [[8, "factor-graphs-versus-values"]], "Non-linear Optimization in GTSAM": [[8, "non-linear-optimization-in-gtsam"]], "Full Posterior Inference": [[8, "full-posterior-inference"], [13, "full-posterior-inference"]], "More Applications": [[9, "more-applications"]], "Conjugate Gradient Optimization": [[9, "conjugate-gradient-optimization"]], "Visual Odometry": [[9, "visual-odometry"]], "Visual SLAM": [[9, "visual-slam"]], "Fixed-lag Smoothing and Filtering": [[9, "fixed-lag-smoothing-and-filtering"]], "Discrete Variables and HMMs": [[9, "discrete-variables-and-hmms"]], "Overview": [[10, "overview"]], "Acknowledgements": [[10, "acknowledgements"]], "PoseSLAM": [[11, "poseslam"]], "Loop Closure Constraints": [[11, "loop-closure-constraints"]], "Using the MATLAB Interface": [[11, "using-the-matlab-interface"]], "Reading and Optimizing Pose Graphs": [[11, "reading-and-optimizing-pose-graphs"]], "PoseSLAM in 3D": [[11, "poseslam-in-3d"]], "Python Examples": [[12, "python-examples"]], "Robot Localization": [[13, "robot-localization"]], "Unary Measurement Factors": [[13, "unary-measurement-factors"]], "Defining Custom Factors": [[13, "defining-custom-factors"]], "Using Custom Factors": [[13, "using-custom-factors"]], "Structure from Motion": [[14, "structure-from-motion"]], "Creating new factor and variable types": [[15, "creating-new-factor-and-variable-types"]], "Tutorials": [[16, "tutorials"]], "iSAM: Incremental Smoothing and Mapping": [[17, "isam-incremental-smoothing-and-mapping"]], "GTSAM": [[18, "gtsam"]], "Indices and tables": [[18, "indices-and-tables"]]}, "indexentries": {}}) \ No newline at end of file