-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
161 lines (140 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from data_loader.data_loaders import KfoldDataloader
from model import model as module_arch
from utils import utils
from utils.logging import TemplateLogger
def train(config):
logger = TemplateLogger.init_logger(config)
dataloader, model = utils.init_modules(config)
model = utils.load_pretrained(model, config) # load task-adaptively pretrained LM if exists
monitor_configs = utils.monitor_config(key=config.utils.monitor, on_step=config.utils.on_step)
trainer = pl.Trainer(
accelerator="gpu",
devices=1,
max_epochs=config.train.max_epoch,
log_every_n_steps=1,
logger=logger.logger,
deterministic=True,
precision=config.utils.precision,
num_sanity_val_steps=1,
callbacks=[
EarlyStopping(
monitor=monitor_configs["monitor"],
mode=monitor_configs["mode"],
patience=config.utils.patience,
),
ModelCheckpoint(
dirpath=logger.save_dir,
save_top_k=config.utils.top_k,
monitor=monitor_configs["monitor"],
mode=monitor_configs["mode"],
filename="{epoch}-{step}-{val_loss}-{val_f1}",
),
],
)
trainer.fit(model=model, datamodule=dataloader, ckpt_path=config.path.resume_path)
trainer.test(model=model, datamodule=dataloader)
# wandb.finish()
config["path"]["best_model_path"] = trainer.checkpoint_callback.best_model_path
logger.save_config(config)
def train_cv(config):
logger = TemplateLogger.init_logger(config)
if config.dataloader.architecture != "KfoldDataloader":
config.dataloader.architecture = "KfoldDataloader"
dataloader, model = utils.init_modules(config)
model = utils.load_pretrained(model, config)
if config.utils.on_step is False:
assert config.utils.patience >= config.k_fold.num_folds, "The given value for `config.utils.patience` should be higher than the number of folds"
monitor_configs = utils.monitor_config(key=config.utils.monitor, on_step=config.utils.on_step)
trainer = pl.Trainer(
accelerator="gpu",
devices=1,
max_epochs=config.train.max_epoch,
log_every_n_steps=1,
logger=logger.logger,
deterministic=True,
precision=config.utils.precision,
num_sanity_val_steps=0, # disable sanity check
callbacks=[
EarlyStopping(
monitor=monitor_configs["monitor"],
mode=monitor_configs["mode"],
patience=config.utils.patience,
),
ModelCheckpoint(
dirpath=logger.save_dir,
save_top_k=config.utils.top_k,
monitor=monitor_configs["monitor"],
mode=monitor_configs["mode"],
filename="{epoch}-{step}-{val_loss}-{val_f1}",
),
],
)
# add K-fold CV fit loop
internal_fit_loop = trainer.fit_loop
trainer.fit_loop = getattr(module_arch, "KFoldLoop")(config.k_fold.num_folds, export_path=logger.save_dir)
trainer.fit_loop.connect(internal_fit_loop)
# k-fold fit_loop runs its own test step as part of fit step
trainer.fit(model=model, datamodule=dataloader, ckpt_path=config.path.resume_path)
config["path"]["best_model_path"] = trainer.checkpoint_callback.best_model_path
logger.save_config(config)
def sweep(config, exp_count):
import wandb
project_name = config.wandb.project
sweep_config = {
"method": "bayes",
"parameters": {
"lr": {
"distribution": "uniform",
"min": 1e-5,
"max": 3e-5,
},
},
"early_terminate": {
"type": "hyperband",
"max_iter": 30,
"s": 2,
},
}
sweep_config["metric"] = {"name": "test_pearson", "goal": "maximize"}
def sweep_train(config=None):
wandb.init(config=config)
config = wandb.config
dataloader, model = utils.new_instance(config, config=None)
wandb_logger = WandbLogger(project=project_name)
save_path = f"{config.path.save_path}{config.model.name}_sweep_id_{wandb.run.name}/"
trainer = pl.Trainer(
gpus=1,
max_epochs=config.train.max_epoch,
logger=wandb_logger,
log_every_n_steps=1,
deterministic=True,
precision=config.utils.precision,
callbacks=[
utils.early_stop(
monitor=utils.monitor_config[config.utils.monitor]["monitor"],
patience=config.utils.patience,
mode=utils.monitor_config[config.utils.monitor]["mode"],
),
utils.best_save(
save_path=save_path,
top_k=config.utils.top_k,
monitor=utils.monitor_config[config.utils.monitor]["monitor"],
mode=utils.monitor_config[config.utils.monitor]["mode"],
filename="{epoch}-{step}-{val_loss}-{val_f1}",
),
],
)
trainer.fit(model=model, datamodule=dataloader)
trainer.test(model=model, datamodule=dataloader)
trainer.save_checkpoint(save_path + "model.ckpt")
# torch.save(model, save_path + "model.pt")
sweep_id = wandb.sweep(
sweep=sweep_config,
project=project_name,
)
wandb.agent(sweep_id=sweep_id, function=sweep_train, count=exp_count)