-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoprofile.py
235 lines (186 loc) · 6.99 KB
/
oprofile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#oprofile
import os
import csv
import shutil
import operator
import subprocess
from sets import Set
import graphing
from utils import *
#TODO callgraph. extra filtred callers and callee graphs?
#########################################
# Sampling methods #
#########################################
def presampling( test_dir):
if os.getuid() == 0:
tool_path = get_tool_path()
subprocess.call( [ "bash", "%s/oprofile-init.sh" % tool_path, test_dir])
else:
print "ERROR: Oprofile requires root previleges"
def sample( test_dir, t):
pass
def postsampling( test_dir):
if os.getuid() == 0:
tool_path = get_tool_path()
subprocess.call( [ "bash", "%s/oprofile-deinit.sh" % tool_path, test_dir])
#########################################
# Parsing samples #
#########################################
def parse( test_dir):
if not os.path.isfile( "%s/samples/oprofile" % test_dir):
return None
#read and sanitize data
file = open( "%s/samples/oprofile" % test_dir, "r")
raw = csv.reader( file, delimiter=' ')
rows = map( lambda row: filter(lambda s: s != '', row), raw)
n_cpu = 0
data = []
for row in rows:
#skip header rows
if len( row) < 4 or not row[0].isdigit():
continue
#determine number of cpus
if n_cpu == 0:
n_cpu = (len ( row) / 2) - 1
#process fields for each row
line = dict()
samples_aggregate = 0.0
runtime_aggregate = 0.0
for cpu in range( n_cpu):
sample = int( row[cpu * 2])
runtime = float( row[(cpu * 2) + 1])
line[ "samples_cpu%d" % cpu] = sample
line[ "runtime_cpu%d" % cpu] = runtime
samples_aggregate += sample
runtime_aggregate += runtime
line[ "samples_aggregate"] = samples_aggregate
line[ "runtime_aggregate"] = runtime_aggregate
line[ "app_name"] = row[ -2]
line[ "symbol_name"] = row[ -1]
data.append( line)
oprof = {}
oprof[ "rows"] = data
oprof[ "n_cpu"] = n_cpu
return oprof #returns n_cpu and data
#########################################
# Plotting data #
#########################################
def plot( test_dir, data, intervall):
if data is None or len( data["rows"]) == 0:
return
#plot unfiltred data
discarded = {}
for key in data["rows"][0]:
if key == "app_name" or key == "symbol_name":
continue
discarded[ key] = 0.0
file_prefix = "%s/oprofile" % test_dir
filter_title = ""
plot_info( file_prefix, filter_title, data, intervall, discarded)
#loading config
config = load_config( "%s/wrstat.config" % test_dir)
#filtering data by appname
filter_all = Set()
filters = config[ "oprofile_app_filter"]
if isinstance( filters, basestring):
filters = [ filters]
for f in filters:
print "%s: processing app filter filter %s" % ( __file__, f)
#create filter set
s = Set()
s.add( f.strip())
filter_all |= s
file_prefix = "%s/oprofile-app-filter-%s" % ( test_dir, f.replace( "/", "_"))
filter_title = "Filtred (App): %s" % f
plot_filter( data, s, intervall, file_prefix, filter_title, filter_key="app_name")
file_prefix = "%s/oprofile-app-filter-all" % ( test_dir)
filter_title = "Filtred by all filers (App)"
plot_filter( data, filter_all, intervall, file_prefix, filter_title, filter_key="app_name")
#filtering data by symbolname
tool_path = get_tool_path()
filter_all = Set()
filters = config[ "oprofile_sym_filter"]
if isinstance( filters, basestring):
filters = [ filters]
for f in filters:
if not os.path.isfile( "%s/%s" % (tool_path, f)):
print "%s: missing sym filter %s" % ( __file__, f)
continue
print "%s: processing sym filter %s" % ( __file__, f)
#create filter set
s = Set()
for line in open( "%s/%s" % (tool_path, f), "r"):
s.add( line.strip())
filter_all |= s
file_prefix = "%s/oprofile-sym-filter-%s" % ( test_dir, f.replace( "/", "_"))
filter_title = "Filtred (Sym): %s" % f
plot_filter( data, s, intervall, file_prefix, filter_title)
file_prefix = "%s/oprofile-sym-filter-all" % ( test_dir)
filter_title = "Filtred by all filers (Sym)"
plot_filter( data, filter_all, intervall, file_prefix, filter_title)
def plot_filter( data, s, intervall, file_prefix, filter_title, filter_key="symbol_name"):
#determine discarded samples
discarded = {}
for key in data["rows"][0]:
if key == "app_name" or key == "symbol_name":
continue
discarded[ key] = 0.0
rows = []
has_data = False
for row in data["rows"]:
if row[ filter_key] in s:
rows.append( row)
has_data = True
else:
for key in data["rows"][0]:
if key == "app_name" or key == "symbol_name":
continue
discarded[ key] += row[ key]
if has_data:
filtred = { "n_cpu" : data[ "n_cpu"], "rows" : rows}
plot_info( file_prefix, filter_title, filtred, intervall, discarded)
def plot_info( prefix, filter_title, data, intervall, discarded):
if data is None or len( data["rows"]) == 0:
return
n_cpu = data[ "n_cpu"]
rows = data[ "rows"]
#separate plot
for cpu in range( n_cpu):
file_prefix = "%s-cpu%d" % ( prefix, cpu)
title_prefix = "Total Runtime CPU %d %s" % ( cpu, filter_title)
plot_histogram( file_prefix, rows, "samples_cpu%d" % cpu, title_prefix, discarded)
#aggregated plot
file_prefix = "%s-aggregate" % prefix
title_prefix = "Total Runtime Aggregate %s" % filter_title
plot_histogram( file_prefix, rows, "samples_aggregate", title_prefix, discarded)
def plot_histogram( file_prefix, rows, key, title_prefix, discarded):
rows = sorted( rows, key=lambda row: row[key])
#prepare data for symbol names
data = {}
sigma = 0.0
for row in rows:
sigma += float( row[key])
data[ row["symbol_name"]] = [float( row[key])]
if sigma == 0:
return
#actual plotting
title = "Oprofile %s (Symbol Names)" % title_prefix
filename = "%s-sym.svg" % file_prefix
g = graphing.init( title, filename)
graphing.histogram_percentage( data, discarded[key], g)
g.close()
#prepare data for app names
apps = {}
for row in rows:
if row["app_name"] not in apps:
apps[ row["app_name"]] = 0.0
apps[row["app_name"]] += row[key]
data = {}
for app, usage in sorted( apps.iteritems(), key=operator.itemgetter(1)):
data[ app] = [float( usage)]
#actual plotting
title = "Oprofile %s (App Names)" % title_prefix
filename = "%s-app.svg" % file_prefix
g = graphing.init( title, filename)
graphing.histogram_percentage( data, discarded[key], g)
g.close()