-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_utils.py
296 lines (271 loc) · 15.6 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import csv
import sys
import gzip
import random
import shutil
import tarfile
import requests
import numpy as np
from clint.textui import progress
from requests.adapters import HTTPAdapter
from requests.exceptions import ConnectionError
class DataUtils:
def __init__(self, printer):
self.printer = printer
self.prenorm_file_cols = {'file_in_docs': [1, 2, 3], 'file_in_orcas': [1], 'file_in_qs_train': [1], 'file_in_qs_dev': [1], 'file_in_qs_val': [1], 'file_in_qs_test': [1], 'file_in_qs_orcas': [1]}
csv.field_size_limit(sys.maxsize)
def parser_add_args(self, parser):
parser.add_argument('--local_dir', default='data/', help='root directory for data files (default: data/)')
parser.add_argument('--web_dir', default='https://msmarco.blob.core.windows.net/msmarcoranking/', help='root directory for data files (default: /data/home/bmitra/data/trec2019-doc/)')
parser.add_argument('--file_in_docs', default='msmarco-docs.tsv', help='filename for document collection (default: msmarco-docs.tsv)')
parser.add_argument('--file_in_orcas', default='orcas.tsv', help='filename for orcas data (default: orcas.tsv)')
parser.add_argument('--file_in_qs_train', default='msmarco-doctrain-queries.tsv', help='filename for train queries (default: msmarco-doctrain-queries.tsv)')
parser.add_argument('--file_in_qs_dev', default='msmarco-docdev-queries.tsv', help='filename for development queries (default: msmarco-docdev-queries.tsv)')
parser.add_argument('--file_in_qs_val', default='msmarco-test2019-queries.tsv', help='filename for validation queries (default: msmarco-test2019-queries.tsv)')
parser.add_argument('--file_in_qs_test', default='msmarco-test2020-queries.tsv', help='filename for test queries (default: msmarco-test2020-queries.tsv)')
parser.add_argument('--file_in_qs_orcas', default='orcas-doctrain-queries.tsv', help='filename for orcas queries (default: orcas-doctrain-queries.tsv)')
parser.add_argument('--file_in_cnd_train', default='msmarco-doctrain-top100', help='filename for top 100 train candidates (default: msmarco-doctrain-top100)')
parser.add_argument('--file_in_cnd_dev', default='msmarco-docdev-top100', help='filename for top 100 dev candidates (default: msmarco-docdev-top100)')
parser.add_argument('--file_in_cnd_val', default='msmarco-doctest2019-top100', help='filename for top 100 validation candidates (default: msmarco-doctest2019-top100)')
parser.add_argument('--file_in_cnd_test', default='msmarco-doctest2020-top100', help='filename for top 100 test candidates (default: msmarco-doctest2020-top100)')
parser.add_argument('--file_in_cnd_orcas', default='orcas-doctrain-top100', help='filename for orcas candidates (default: orcas-doctrain-top100)')
parser.add_argument('--file_in_qrel_train', default='msmarco-doctrain-qrels.tsv', help='filename for train qrels (default: msmarco-doctrain-qrels.tsv)')
parser.add_argument('--file_in_qrel_dev', default='msmarco-docdev-qrels.tsv', help='filename for dev qrels (default: msmarco-docdev-qrels.tsv)')
parser.add_argument('--file_in_qrel_val', default='2019qrels-docs.txt', help='filename for validation qrels (default: 2019qrels-docs.txt)')
parser.add_argument('--file_in_qrel_orcas', default='orcas-doctrain-qrels.tsv', help='filename for orcas qrels (default: orcas-doctrain-qrels.tsv)')
parser.add_argument('--file_gen_docs_lookup', default='lookup-docs-norm.tsv', help='filename for document offsets for collection (default: lookup-docs-norm.tsv)')
parser.add_argument('--file_gen_orcas_docs', default='orcas-docs.tsv', help='filename for orcas field (default: orcas-docs.tsv)')
parser.add_argument('--file_gen_orcas_docs_lookup', default='lookup-orcas-docs-norm.tsv', help='filename for document offsets for orcas field (default: lookup-docs-orcas-norm.tsv)')
parser.add_argument('--num_fields', default=4, help='number of fields per document (default: 4)', type=int)
parser.add_argument('--num_dev_queries', default=100, help='number of queries to sample for dev set (default: 100)', type=int)
def parser_validate_args(self, args):
self.args = args
if not os.path.exists(args.local_dir):
os.makedirs(args.local_dir)
def setup_and_verify(self):
self.__verify_in_data()
self.__verify_gen_data()
self.__preload_data_to_memory()
def get_doc_content(self, f_docs, f_orcas, did):
if did == '':
return [''] * self.args.num_fields
f_docs.seek(self.doc_offsets[did])
line = f_docs.readline()
assert line.startswith(did + "\t"), 'looking for {} at position {}, found {}'.format(did, self.doc_offsets[did], line)
field_values = line.split('\t')[1:]
if did in self.orcas_docs_offsets:
f_orcas.seek(self.orcas_docs_offsets[did])
line = f_orcas.readline()
assert line.startswith(did + "\t"), 'looking for {} at position {}, found {}'.format(did, self.orcas_docs_offsets[did], line)
orcas_field = line.split('\t')[1]
else:
orcas_field = ''
field_values.append(orcas_field)
return field_values
def __preload_data_to_memory(self):
self.printer.print('preloading data to memory')
self.doc_offsets = self.__get_doc_offsets(os.path.join(self.args.local_dir, self.args.file_gen_docs_lookup))
self.orcas_docs_offsets = self.__get_doc_offsets(os.path.join(self.args.local_dir, self.args.file_gen_orcas_docs_lookup))
self.dids = list(self.doc_offsets.keys())
qs_train = self.__load_set('train')
qs_dev = self.__load_set('dev', num_samples=self.args.num_dev_queries)
qs_val = self.__load_set('val')
qs_test = self.__load_set('test')
if self.args.orcas_train:
qs_orcas = self.__load_set('orcas')
self.qs = {**qs_train, **qs_orcas, **qs_dev, **qs_val, **qs_test}
else:
self.qs = {**qs_train, **qs_dev, **qs_val, **qs_test}
setattr(self.args, 'collection_size', len(self.doc_offsets))
setattr(self.args, 'num_train_queries', len(qs_train))
self.args.num_dev_queries = len(qs_dev)
def __verify_in_data(self):
self.printer.print('verifying input data')
for k, file_name in vars(self.args).items():
if k.startswith('file_in_'):
expect_prenorm = self.__should_prenorm_file(k)
if expect_prenorm:
file_norm = self.__get_post_norm_filename(file_name)
if self.__verify_and_download_file(file_norm):
setattr(self.args, k, file_norm)
continue
if self.__verify_and_download_file(file_name):
if expect_prenorm:
self.__prenorm_input_file(k, os.path.join(self.args.local_dir, file_name), os.path.join(self.args.local_dir, file_norm))
setattr(self.args, k, file_norm)
else:
self.printer.print('error: can not find file {}'.format(file_name))
sys.exit(0)
def __verify_gen_data(self):
self.printer.print('verifying intermediate data')
for k, file_name in vars(self.args).items():
if k.startswith('file_gen_'):
if not self.__verify_and_download_file(file_name):
if k == 'file_gen_docs_lookup':
self.__generate_lookup()
elif k == 'file_gen_orcas_docs' or k == 'file_gen_orcas_docs_lookup':
self.__generate_orcas_field()
def __should_prenorm_file(self, file_key):
return (file_key in self.prenorm_file_cols)
def __get_post_norm_filename(self, file_name):
return file_name + '.norm'
def __prenorm_input_file(self, file_key, file_path, file_path_norm):
self.printer.print('normalizing {}'.format(file_path))
with open(file_path, 'rt', encoding='utf8') as f_in:
with open(file_path_norm, 'w', encoding='utf8') as f_out:
reader = csv.reader(f_in, delimiter='\t', quoting=csv.QUOTE_NONE)
cols_to_clean = self.prenorm_file_cols[file_key]
for row in reader:
clean_cols = []
for i in range(len(row)):
clean_cols.append(self.parent.model_utils.clean_text(row[i]) if i in cols_to_clean else row[i])
clean_text = '\t'.join(clean_cols)
f_out.write(clean_text)
f_out.write('\n')
os.remove(file_path)
def __generate_lookup(self):
self.printer.print('generating document offsets for collection')
with open(os.path.join(self.args.local_dir, self.args.file_in_docs), 'rt', encoding='utf8') as f_in:
with open(os.path.join(self.args.local_dir, self.args.file_gen_docs_lookup), 'w', encoding='utf8') as f_out:
offset = 0
line = f_in.readline()
while line:
did = line.split('\t')[0]
f_out.write('{}\t{}\n'.format(did, offset))
offset = f_in.tell()
line = f_in.readline()
def __generate_orcas_field(self):
self.printer.print('generating orcas field data')
orcas_field = {}
with open(os.path.join(self.args.local_dir, self.args.file_in_orcas), 'rt', encoding='utf8') as f_in:
reader = csv.reader(f_in, delimiter='\t')
for [qid, q, did, _] in reader:
if did not in orcas_field:
orcas_field[did] = []
orcas_field[did].append(q)
orcas_field = {k: ' '.join(v) for k,v in orcas_field.items()}
with open(os.path.join(self.args.local_dir, self.args.file_gen_orcas_docs), 'w', encoding='utf8') as f_out:
with open(os.path.join(self.args.local_dir, self.args.file_gen_orcas_docs_lookup), 'w', encoding='utf8') as f_lookup:
offset = 0
for did, field in orcas_field.items():
f_out.write('{}\t{}\n'.format(did, field))
f_lookup.write('{}\t{}\n'.format(did, offset))
offset = f_out.tell()
def __get_doc_offsets(self, lookup_file):
offsets = {}
with open(lookup_file, 'rt', encoding='utf8') as f:
reader = csv.reader(f, delimiter='\t')
for [did, offset] in reader:
offsets[did] = int(offset)
return offsets
def __load_set(self, query_set, num_samples=0):
file_in_qs = getattr(self.args, 'file_in_qs_{}'.format(query_set))
qs = self.__get_qs(file_in_qs)
file_in_cnd = getattr(self.args, 'file_in_cnd_{}'.format(query_set))
cand = self.__get_candidates(file_in_cnd)
qids = set(qs.keys()) & set(cand.keys())
if query_set != 'test':
file_in_qrel = getattr(self.args, 'file_in_qrel_{}'.format(query_set))
qrels = self.__get_qrels(file_in_qrel)
qids = qids & set(qrels.keys())
qids = list(qids)
if num_samples > 0:
qids = random.sample(qids, min(num_samples, len(qids)))
setattr(self, 'qids_{}'.format(query_set), qids)
if query_set != 'test':
qrels = {qid: qrels[qid] for qid in qids}
setattr(self, 'qrels_{}'.format(query_set), qrels)
cand = {qid: cand[qid] for qid in qids}
setattr(self, 'cand_{}'.format(query_set), cand)
qs = {qid: qs[qid] for qid in qids}
return qs
def __get_qrels(self, qrels_file):
qrels = {}
with open(os.path.join(self.args.local_dir, qrels_file), 'rt', encoding='utf8') as f:
reader = csv.reader(f, delimiter=' ')
for [qid, _, did, rating] in reader:
rating = int(rating)
if rating == 0:
continue
if qid not in qrels:
qrels[qid] = {}
qrels[qid][did] = rating
return qrels
def __get_candidates(self, cnd_file):
cands = {}
with open(os.path.join(self.args.local_dir, cnd_file), 'rt', encoding='utf8') as f:
reader = csv.reader(f, delimiter=' ')
for [qid, _, did, _, _, _] in reader:
if qid not in cands:
cands[qid] = [did]
else:
cands[qid].append(did)
return cands
def __get_qs(self, qs_file):
qs = {}
with open(os.path.join(self.args.local_dir, qs_file), 'rt', encoding='utf8') as f:
reader = csv.reader(f, delimiter='\t')
for [qid, q_txt] in reader:
qs[qid] = q_txt
return qs
def __verify_and_download_file(self, file_name):
file_local = os.path.join(self.args.local_dir, file_name)
if not os.path.exists(file_local):
file_local_tar = '{}.tar'.format(file_local)
file_local_gz = '{}.gz'.format(file_local)
file_local_tar_gz = '{}.tar.gz'.format(file_local)
if os.path.exists(file_local_tar):
self.__untar(file_local_tar)
elif os.path.exists(file_local_gz):
self.__uncompress(file_local_gz)
elif os.path.exists(file_local_tar_gz):
self.__untar(file_local_tar_gz)
else:
file_web = os.path.join(self.args.web_dir, file_name)
file_web_tar = '{}.tar'.format(file_web)
file_web_gz = '{}.gz'.format(file_web)
file_web_tar_gz = '{}.tar.gz'.format(file_web)
if self.__web_file_exists(file_web):
self.__download_file(file_web, file_local)
elif self.__web_file_exists(file_web_tar):
self.__download_file(file_web_tar, file_local_tar)
self.__untar(file_local_tar)
elif self.__web_file_exists(file_web_gz):
self.__download_file(file_web_gz, file_local_gz)
self.__uncompress(file_local_gz)
elif self.__web_file_exists(file_web_tar_gz):
self.__download_file(file_web_tar_gz, file_local_tar_gz)
self.__untar(file_local_tar_gz)
else:
return False
return True
def __untar(self, filename):
self.printer.print('unpacking {}'.format(filename))
f = tarfile.open(filename)
f.extractall(path=os.path.dirname(filename))
f.close()
os.remove(filename)
def __uncompress(self, filename, block_size=65536):
self.printer.print('uncompressing {}'.format(filename))
with gzip.open(filename, 'rb') as s_file:
with open(filename[:-3], 'wb') as d_file:
shutil.copyfileobj(s_file, d_file, block_size)
os.remove(filename)
def __web_file_exists(self, url):
return requests.head(url).status_code != 404
def __download_file(self, filename_web, filename_local):
self.printer.print('downloading {}'.format(filename_web))
chunk_size = 1048576
adapter = HTTPAdapter(max_retries=10)
session = requests.Session()
session.mount(filename_web, adapter)
try:
r = session.get(filename_web, stream=True, timeout=5)
with open(filename_local, 'wb') as f:
total_length = int(r.headers.get('content-length'))
for ch in progress.bar(r.iter_content(chunk_size=chunk_size), expected_size=(total_length / chunk_size) + 1):
if ch:
f.write(ch)
except ConnectionError as ce:
self.printer.print('error: {}'.format(ce))