-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnotebook_gsc.py
791 lines (631 loc) · 32.5 KB
/
notebook_gsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
"""
Implementation of FSDP described in the paper:
N. Gkalelis, V. Mezaris, "Fractional Step Discriminant Pruning:
A Filter Pruning Framework for Deep Convolutional Neural Networks",
Proc. 7th IEEE Int. Workshop on Mobile Multimedia Computing (MMC2020)
at the IEEE Int. Conf. on Multimedia and Expo (ICME), London, UK, July 2020.
History
-------
DATE | DESCRIPTION | NAME | ORGANIZATION |
16/01/2020 | first creation of FSDP method | Nikolaos Gkalelis | CERTH-ITI |
"""
from __future__ import division
import os, shutil, time, random
import argparse
import torch
import torch.backends.cudnn as cudnn
import torchvision.datasets as dset
import torchvision.transforms as transforms
from utils import AverageMeter, RecorderMeter, time_string, convert_secs2time
import models
import numpy as np
import pickle
from scipy.spatial import distance
from torch.nn.functional import one_hot, relu
from utilities.expPrmDecay import cmpAsymptoticSchedule
from torch.utils.data.sampler import WeightedRandomSampler
import speech_transforms
from datasets.gsc import gsc_utils
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Trains ResNeXt on CIFAR or ImageNet', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['gsc'], help='Dataset to use.')
parser.add_argument('--arch', metavar='ARCH', default='resnet20', choices=['resnet20', 'resnet56', 'resnet110' ])
parser.add_argument('--epochs', type=int, default=200, help='Number of epochs to train.')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', type=float, default=0.0005, help='Weight decay (L2 penalty).')
parser.add_argument('--schedule', type=int, nargs='+', default=[1, 60, 120, 160], help='Decrease learning rate at these epochs.')
parser.add_argument('--gammas', type=float, nargs='+', default=[10, 0.2, 0.2, 0.2],
help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
parser.add_argument('--print_freq', default=200, type=int, metavar='N', help='print frequency (default: 200)')
parser.add_argument('--save_path', type=str, default='./', help='Folder to save checkpoints and log.')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--layer_begin', type=int, default=0, help='index of first conv layer of model')
parser.add_argument('--layer_end', type=int, default=54, help='index of last conv layer of model')
parser.add_argument('--layer_inter', type=int, default=3, help='interval between conv layers in the model')
parser.add_argument('--epoch_prune', type=int, default=1, help='every how many epochs to prune the model')
parser.add_argument('--use_state_dict', dest='use_state_dict', action='store_true', help='use state dcit or not')
parser.add_argument('--use_pretrain', dest='use_pretrain', action='store_true', help='use pre-trained model or not')
parser.add_argument('--pretrain_path', default='', type=str, help='..path of pre-trained model')
parser.add_argument('--batch_prune_size', type=int, default=256, help='Batch size.')
parser.add_argument('--use_zero_scaling', dest='use_zero_scaling', action='store_true', help='use zero scaling factors or asymptotic')
parser.add_argument('--max_iter_cs', type=int, default=10000, help='maximum number of batch iterations for cs criterion')
parser.add_argument('--epoch_apply_cs', type=int, default=range(0, 200, 2), help='epochs to apply the cs criterion')
parser.add_argument('--tau', type=float, default=10., help='parameter tau for computing the asymptotic pruning schedule')
parser.add_argument('--scaling_attenuation', type=float, default=1., help='global attenuation factor for weights')
parser.add_argument('--prune_rate_cs', type=float, default=0.1, help='final pruning rate for cs criterion')
parser.add_argument('--prune_rate_gm', type=float, default=0.4, help='the reducing ratio of pruning based on Distance')
parser.add_argument("--input", choices=['mel32'], default='mel32', help='input of NN')
parser.add_argument('--multi_crop', action='store_true', help='apply crop and average the results')
args = parser.parse_args()
args.use_cuda = args.ngpu > 0 and torch.cuda.is_available()
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
cudnn.benchmark = True
def main():
# Init logger
if not os.path.isdir(args.save_path):
os.makedirs(args.save_path)
log = open(os.path.join(args.save_path, 'log_seed_{}.txt'.format(args.manualSeed)), 'w')
print_log('save path : {}'.format(args.save_path), log)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
print_log("Random Seed: {}".format(args.manualSeed), log)
print_log("CS Pruning Rate: {}".format(args.prune_rate_cs), log)
print_log("GM Pruning Rate: {}".format(args.prune_rate_gm), log)
print_log("Layer Begin: {}".format(args.layer_begin), log)
print_log("Layer End: {}".format(args.layer_end), log)
print_log("Layer Inter: {}".format(args.layer_inter), log)
print_log("Epoch prune: {}".format(args.epoch_prune), log)
print_log("use pretrain: {}".format(args.use_pretrain), log)
print_log("Pretrain path: {}".format(args.pretrain_path), log)
# Init dataset
if not os.path.isdir(args.data_path):
os.makedirs(args.data_path)
n_mels = 32
if args.input == 'mel40':
n_mels = 40
data_aug_transform = transforms.Compose([
speech_transforms.ChangeAmplitude(),
speech_transforms.ChangeSpeedAndPitchAudio(),
speech_transforms.FixAudioLength(),
speech_transforms.ToSTFT(),
speech_transforms.StretchAudioOnSTFT(),
speech_transforms.TimeshiftAudioOnSTFT(),
speech_transforms.FixSTFTDimension()])
parser.add_argument("--background_noise", type=str, default='datasets/gsc/train/_background_noise_',
help='path of background noise')
backgroundNoisePname = os.path.join(args.data_path, 'train\_background_noise_')
bg_dataset = gsc_utils.BackgroundNoiseDataset(backgroundNoisePname, data_aug_transform)
add_bg_noise = speech_transforms.AddBackgroundNoiseOnSTFT(bg_dataset)
train_feature_transform = transforms.Compose([
speech_transforms.ToMelSpectrogramFromSTFT(n_mels=n_mels),
speech_transforms.DeleteSTFT(),
speech_transforms.ToTensor('mel_spectrogram', 'input')])
train_dataset = gsc_utils.SpeechCommandsDataset(
os.path.join(args.data_path, 'train'),
transforms.Compose([speech_transforms.LoadAudio(),
data_aug_transform,
add_bg_noise,
train_feature_transform]))
valid_feature_transform = transforms.Compose([
speech_transforms.ToMelSpectrogram(n_mels=n_mels),
speech_transforms.ToTensor('mel_spectrogram', 'input')])
valid_dataset = gsc_utils.SpeechCommandsDataset(
os.path.join(args.data_path, 'valid'),
transforms.Compose([
speech_transforms.LoadAudio(),
speech_transforms.FixAudioLength(),
valid_feature_transform]))
test_dataset = gsc_utils.SpeechCommandsDataset(
os.path.join(args.data_path, 'test'),
transforms.Compose([
speech_transforms.LoadAudio(),
speech_transforms.FixAudioLength(),
valid_feature_transform]),
silence_percentage=0)
weights = train_dataset.make_weights_for_balanced_classes()
sampler = WeightedRandomSampler(weights, len(weights))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, sampler=sampler,
num_workers=args.workers, pin_memory=True)
train_prune_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_prune_size,
num_workers=args.workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
num_classes = len(gsc_utils.CLASSES)
print_log("=> creating model '{}'".format(args.arch), log)
# Init model, criterion, and optimizer
net = models.__dict__[args.arch](num_classes=num_classes, in_channels=1, fctMultLinLyr=64)
print_log("=> network :\n {}".format(net), log)
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
if args.use_cuda:
net.cuda()
criterion.cuda()
if args.use_pretrain:
pretrain = torch.load(args.pretrain_path)
if args.use_state_dict:
net.load_state_dict(pretrain['state_dict'])
else:
net = pretrain['state_dict']
recorder = RecorderMeter(args.epochs)
mdlIdx2ConvIdx = [] # module index to conv filter index
for index1, layr in enumerate(net.modules()):
if isinstance(layr, torch.nn.Conv2d):
mdlIdx2ConvIdx.append(index1)
prmIdx2ConvIdx = [] # parameter index to conv filter index
for index2, item in enumerate(net.parameters()):
if len(item.size()) == 4:
prmIdx2ConvIdx.append(index2)
# set index of last layer depending on the known architecture
if args.arch == 'resnet20':
args.layer_end = 54
elif args.arch == 'resnet56':
args.layer_end = 162
elif args.arch == 'resnet110':
args.layer_end = 324
else:
pass # unkonwn architecture, use input value
# asymptotic schedule
total_pruning_rate = args.prune_rate_gm + args.prune_rate_cs
compress_rates_total, scalling_factors, compress_rates_cs, compress_rates_fpgm, e2 =\
cmpAsymptoticSchedule(theta3=total_pruning_rate, e3=args.epochs-1, tau=args.tau, theta_cs_final=args.prune_rate_cs, scaling_attn=args.scaling_attenuation) # tau=8.
keep_rate_cs = 1. - compress_rates_cs
if args.use_zero_scaling:
scalling_factors = np.zeros(scalling_factors.shape)
m = Mask(net, train_prune_loader, mdlIdx2ConvIdx, prmIdx2ConvIdx, scalling_factors, keep_rate_cs, compress_rates_fpgm, args.max_iter_cs)
m.set_curr_epoch(0)
m.set_epoch_cs(args.epoch_apply_cs)
m.init_selected_filts()
m.init_length()
val_acc_1, val_los_1 = validate(test_loader, net, criterion, log)
m.model = net
m.init_mask(keep_rate_cs[0], compress_rates_fpgm[0], scalling_factors[0])
# m.if_zero()
m.do_mask()
m.do_similar_mask()
net = m.model
# m.if_zero()
if args.use_cuda:
net = net.cuda()
val_acc_2, val_los_2 = validate(test_loader, net, criterion, log)
# Main loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(args.start_epoch, args.epochs):
current_learning_rate = adjust_learning_rate(optimizer, epoch, args.gammas, args.schedule)
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs - epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log(
'\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs,
need_time, current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False),
100 - recorder.max_accuracy(False)), log)
# train for one epoch
train_acc, train_los = train(train_loader, net, criterion, optimizer, epoch, log, m)
# evaluate on validation set
if epoch % args.epoch_prune == 0 or epoch == args.epochs - 1:
m.model = net
m.set_curr_epoch(epoch)
# m.if_zero()
m.init_mask(keep_rate_cs[epoch], compress_rates_fpgm[epoch], scalling_factors[epoch])
m.do_mask()
m.do_similar_mask()
# m.if_zero()
net = m.model
if args.use_cuda:
net = net.cuda()
if epoch == args.epochs - 1:
m.if_zero()
val_acc_2, val_los_2 = validate(test_loader, net, criterion, log)
is_best = recorder.update(epoch, train_los, train_acc, val_los_2, val_acc_2)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net,
'recorder': recorder,
'optimizer': optimizer.state_dict(),
}, is_best, args.save_path, 'checkpoint.pth.tar')
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve(os.path.join(args.save_path, 'curve.png'))
log.close()
# train function
def train(train_loader, model, criterion, optimizer, epoch, log, m):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, aBatch in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = aBatch['target']
input = aBatch['input']
input = torch.unsqueeze(input, 1)
if args.use_cuda:
target = target.cuda()
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data, input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
# Mask grad for iteration
m.do_grad_mask()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(
' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg),
log)
return top1.avg, losses.avg
def validate(val_loader, model, criterion, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, aBatch in enumerate(val_loader):
target = aBatch['target']
input = aBatch['input']
input = torch.unsqueeze(input, 1)
N = input.size(0) # number of observations in the batch
if args.multi_crop:
input = gsc_utils.multi_crop(input)
if args.use_cuda:
target = target.cuda()
input = input.cuda()
# compute output
output = model(input)
if args.multi_crop:
output = output.view(-1, N, input.size(1))
output = torch.mean(output, dim=0)
output = torch.nn.functional.softmax(output, dim=1)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data, input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
print_log(' **Test** Prec@1 {top1:.3f} Prec@5 {top5:.3f} Error@1 {error1:.3f}'.format(
top1=top1.avg, top5=top5.avg, error1=100 - top1.avg), log)
return top1.avg, losses.avg
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()
def save_checkpoint(state, is_best, save_path, filename):
filename = os.path.join(save_path, filename)
torch.save(state, filename)
if is_best:
bestname = os.path.join(save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.learning_rate
assert len(gammas) == len(schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_obj(obj, name):
with open('obj/' + name + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(name):
with open('obj/' + name + '.pkl', 'rb') as f:
return pickle.load(f)
class Mask:
def __init__(self, model, train_prune_loader, mdlIdx2ConvIdx, prmIdx2ConvIdx, zetas, keep_rate_cs, compress_rate_fpgm, max_iter_cs):
self.model_size = {}
self.model_length = {}
self.cs_rate = {}
self.gm_rate = {}
self.mat = {}
self.model = model
self.mask_index = []
self.filter_small_index = {}
self.filter_large_index = {}
self.similar_matrix = {}
self.norm_matrix = {}
self.train_prune_loader = train_prune_loader
self.mdlIdx2ConvIdx = np.array(mdlIdx2ConvIdx)
self.prmIdx2ConvIdx = np.array(prmIdx2ConvIdx)
self.max_iter_cs = max_iter_cs
self.NN = self._cmpInvCardinalityMat()
self.alpha_curr = 0.
self.curr_epoch = 0 # current epoch
self.fselected_prune = {} # selected filters to attenuate and discard at the end
self.filter_index_sorted = {}
self.zetas = zetas
self.keep_rate_cs = keep_rate_cs
self.keep_rate_gm = compress_rate_fpgm
self.epoch_cs = []
def computeDiscrScores(self):
print('CS criterion>> Entering')
time1 = time.time()
num_classes = list(self.model.modules())[-1].out_features
# initialize data containers and hooks to obtain layer feature map output
XXX = [] # feature map
hh = [] # hook handler
conv_size = []
layer2index = {}
index2layer = {}
j=0
for index, LayerPrms in enumerate(self.model.parameters()):
if index in self.mask_index: # if conv filter
conv_size.append(LayerPrms.size()[0])
layer2index[j] = index
index2layer[index] = j
j += 1
def _conv_layer_hook_function(module, input_, output):
nonlocal XXX
XX, _ = torch.max(relu(output.clone().detach()), dim=3) # ensure ReLu is applied
XX, _ = torch.max(XX, dim=2)
XXX.append(XX)
mdlFiltIdx = self.mdlIdx2ConvIdx[self.prmIdx2ConvIdx == index] # get filter index in module level
for indexLayr, layr in enumerate(self.model.modules()):
if indexLayr == mdlFiltIdx + 1: # get the batch normalized data (one layer next)
#hh[indexLayr] = layr.register_forward_hook(_conv_layer_hook_function)
hh.append( layr.register_forward_hook(_conv_layer_hook_function) )
L = len(conv_size) # number of layers
fmx = max(conv_size) # maximum number of filters in a layer
RXX = torch.zeros((L, fmx, num_classes, 1), dtype=torch.double).cuda()
niter = 0
for aBatch in self.train_prune_loader:
X = aBatch['input']
Y = aBatch['target']
X = torch.unsqueeze(X, 1)
X = X.cuda()
Y = Y.cuda()
Li = list(Y.size())[0] # number of observations may be less than batch size in the last batch!
_ = self.model(X) # fill hooks
R = one_hot(Y, num_classes=num_classes).float() # compute indicator matrix
for l in range(L): # for each layer
F = conv_size[l]
for f in range(F): # for each filter in this layer
RXX[l,f,:,:] += torch.mm(torch.t(R), XXX[l][:, f].unsqueeze_(1))
#print('CS criterion, processing Layer - filter idx : {} - {}'.format(l, f))
while XXX: # clear for next iteration
aX = XXX.pop(0)
del aX
niter += 1
#print('CS criterion, iteration : {}'.format(niter))
if niter == self.max_iter_cs:
break
XXX.clear() # clear for next itration
XXX = None
del XXX
while hh:
ahh = hh.pop(0)
ahh.remove()
del ahh
# compute discriminant score for each filter
dnp = np.zeros((L, fmx), dtype=np.float64)
NN = self.NN.double()
for l in range(L): # for each layer
F = conv_size[l]
for f in range(F): # for each filter in this layer
RXf = torch.t(RXX[l,f,:,:]).double()
M = torch.mm(RXf, NN) # compute mean matrix
P = num_classes * torch.eye(num_classes, dtype=torch.float64)
P -= torch.ones([num_classes, num_classes], dtype=torch.float64)
P = P.cuda()
Sb = torch.mm(torch.mm(M, P), torch.t(M))
dnp[l, f] = torch.trace(Sb).detach().cpu().numpy()
time2 = time.time()
#print('CS criterion>> Exiting; Time needed (secs) {}'.format( (time2 - time1) ))
return dnp, index2layer, conv_size
def _cmpInvCardinalityMat(self):
num_classes = list(self.model.modules())[-1].out_features
# compute class cardinality vector and inverse cardinality matrix matrix
nn = torch.zeros([num_classes, ], dtype=torch.int64) # initialize class cardinality vector
niter = 0
for bidx, aBatch in enumerate(self.train_prune_loader):
labels = aBatch['target']
ll, nn_i = torch.unique(labels, sorted=True, return_counts=True)
if len(ll) != num_classes:
for idx, lbl in enumerate(
ll): # assuming integer labels in ascending order starting from 0 to num_classes-1
nn[int(lbl)] = nn_i[idx]
else:
nn += nn_i
niter += 1
if niter == self.max_iter_cs:
break
nn = nn.float()
# N = torch.sum(nn) # total number of training observations
NN = torch.diag(torch.tensor(1.) / nn).cuda()
return NN
# optimize for fast ccalculation
def get_filter_similar(self, index, weight_torch, compress_rate_gm, keep_rate_cs, scaling_factor, filter_index_sorted_da, length):
print('Pruning rates: CS {} GM {}'.format(1- keep_rate_cs, compress_rate_gm))
codebook = np.ones(length)
if len(weight_torch.size()) == 4:
filter_pruned_num = int(weight_torch.size()[0] * (1 - keep_rate_cs))
similar_pruned_num = int(weight_torch.size()[0] * compress_rate_gm)
weight_vec = weight_torch.view(weight_torch.size()[0], -1)
filter_large_index = filter_index_sorted_da[filter_pruned_num:]
indices = torch.LongTensor(filter_large_index).cuda()
weight_vec_after_cs = torch.index_select(weight_vec, 0, indices).cpu().numpy()
similar_matrix = distance.cdist(weight_vec_after_cs, weight_vec_after_cs, 'euclidean')
similar_sum = np.sum(np.abs(similar_matrix), axis=0)
similar_small_index = similar_sum.argsort()[: similar_pruned_num]
similar_index_for_filter = [filter_large_index[i] for i in similar_small_index]
#print('GM criterion, selected filters | Layer idx - prune filter idx - alpha: {} - {} - {}'.format(index, similar_index_for_filter, scaling_factor))
kernel_length = weight_torch.size()[1] * weight_torch.size()[2] * weight_torch.size()[3]
for x in range(0, len(similar_index_for_filter)):
codebook[similar_index_for_filter[x] * kernel_length: (similar_index_for_filter[x] + 1) * kernel_length] = scaling_factor
else:
pass
return codebook
def convert2tensor(self, x):
x = torch.FloatTensor(x)
return x
def init_length(self):
for index, item in enumerate(self.model.parameters()):
self.model_size[index] = item.size()
for index1 in self.model_size:
for index2 in range(0, len(self.model_size[index1])):
if index2 == 0:
self.model_length[index1] = self.model_size[index1][0]
else:
self.model_length[index1] *= self.model_size[index1][index2]
def init_rate(self, compress_rate_cs_per_layer, compress_rate_gm_per_layer):
for index, item in enumerate(self.model.parameters()):
self.cs_rate[index] = 1
self.gm_rate[index] = 1
for key in range(args.layer_begin, args.layer_end + 1, args.layer_inter):
self.cs_rate[key] = compress_rate_cs_per_layer
self.gm_rate[key] = compress_rate_gm_per_layer
# different setting for different architecture
if args.arch == 'resnet20':
last_index = 57
elif args.arch == 'resnet56':
last_index = 165
elif args.arch == 'resnet110':
last_index = 327
# to jump the last fc layer
self.mask_index = [x for x in range(0, last_index, 3)]
def init_mask(self, keep_rate_cs, compress_rate_fpgm, scaling_factor):
#print('Pruning rates: CS {} GM {}'.format(1 - keep_rate_cs, compress_rate_fpgm))
self.init_rate(keep_rate_cs, compress_rate_fpgm)
dnp = []
index2layer = []
conv_size = []
if self.curr_epoch == 0 or (self.curr_epoch in self.epoch_cs):
dnp, index2layer, conv_size = self.computeDiscrScores()
for index, item in enumerate(self.model.parameters()):
if index in self.mask_index: # if conv filter
# mask for cs criterion
prmFiltIdx = index
weight_torch = item.data
length = self.model_length[index]
codebook = np.ones(length)
filter_pruned_num = int(weight_torch.size()[0] * (1 - keep_rate_cs))
filter_index_sorted = []
if len(weight_torch.size()) == 4: # and filter_pruned_num > 0:
filter_index_selected = []
if self.curr_epoch == 0 or (self.curr_epoch in self.epoch_cs):
ll = index2layer[prmFiltIdx]
filter_index_sorted = dnp[ll, :conv_size[ll]].argsort()
filter_index_selected = list(filter_index_sorted[:filter_pruned_num])
self.fselected_prune[prmFiltIdx] = filter_index_selected
self.filter_index_sorted[prmFiltIdx] = filter_index_sorted
else:
filter_index_selected = self.fselected_prune[prmFiltIdx]
filter_index_sorted = self.filter_index_sorted[prmFiltIdx]
#print('CS criterion, selected filters | Layer idx - prune filter idx - alpha: {} - {} - {}'.format(
prmFiltIdx, filter_index_selected, scaling_factor))
if filter_pruned_num > 0:
kernel_length = weight_torch.size()[1] * weight_torch.size()[2] * weight_torch.size()[3]
for x in range(0, len(filter_index_selected)):
codebook[filter_index_selected[x] * kernel_length: (filter_index_selected[
x] + 1) * kernel_length] = scaling_factor # * codebook[filter_index_selected[x] * kernel_length: (filter_index_selected[x] + 1) * kernel_length]
self.mat[index] = codebook
self.mat[index] = self.convert2tensor(self.mat[index])
if args.use_cuda:
self.mat[index] = self.mat[index].cuda()
# mask for distance criterion
self.similar_matrix[index] = self.get_filter_similar(index, item.data, compress_rate_fpgm,
keep_rate_cs, scaling_factor,
filter_index_sorted,
self.model_length[index])
self.similar_matrix[index] = self.convert2tensor(self.similar_matrix[index])
if args.use_cuda:
self.similar_matrix[index] = self.similar_matrix[index].cuda()
print("mask Ready")
def do_mask(self):
for index, item in enumerate(self.model.parameters()):
if index in self.mask_index:
a = item.data.view(self.model_length[index])
b = a * self.mat[index]
item.data = b.view(self.model_size[index])
print("mask Done")
def do_similar_mask(self):
for index, item in enumerate(self.model.parameters()):
if index in self.mask_index:
a = item.data.view(self.model_length[index])
b = a * self.similar_matrix[index]
item.data = b.view(self.model_size[index])
print("mask similar Done")
def do_grad_mask(self):
for index, item in enumerate(self.model.parameters()):
if index in self.mask_index:
a = item.grad.data.view(self.model_length[index])
# reverse the mask of model
# b = a * (1 - self.mat[index])
b = a * self.mat[index]
b = b * self.similar_matrix[index]
item.grad.data = b.view(self.model_size[index])
# print("grad zero Done")
def if_zero(self):
for index, item in enumerate(self.model.parameters()):
if (index in self.mask_index):
# if index == 0:
a = item.data.view(self.model_length[index])
b = a.cpu().numpy()
print( "number of nonzero weight is %d, zero is %d" % (np.count_nonzero(b), len(b) - np.count_nonzero(b)))
def set_train_prune_loader(self, train_prune_loader):
self.train_prune_loader = train_prune_loader
def set_curr_epoch(self, aEpoch):
self.curr_epoch = aEpoch # current epoch
def init_selected_filts(self):
for index, item in enumerate(self.model.parameters()):
self.fselected_prune[index] = [] # selected filters to attenuate and discard at the end
self.filter_index_sorted[index] = []
def set_epoch_cs(self, aEpoch):
self.epoch_cs = aEpoch # current epoch
if __name__ == '__main__':
main()