-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmst.cpp
112 lines (106 loc) · 2.63 KB
/
mst.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <algorithm>
#include <fstream>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
typedef pair<int, int> pii;
ifstream input("mst.inp");
ofstream output("mst.out");
vector<pii> v[10001];
vector<pair<pii, pii> > v2;
queue<int> q;
int *visit;
int getParent(int *visit, int x) {
if (visit[x] == x)
return x;
return visit[x] = getParent(visit, visit[x]);
}
void unionParent(int *visit, int a, int b) {
a = getParent(visit, a);
b = getParent(visit, b);
if (a < b)
visit[b] = a;
else
visit[a] = b;
}
int find(int *visit, int a, int b) {
a = getParent(visit, a);
b = getParent(visit, b);
if (a == b)
return 1;
else
return 0;
}
void kruskal(int n, int m) {
int result = 0;
visit = new int[n];
for (int i = 0; i < n; i++) {
visit[i] = i;
}
for (int i = 0; i < m; i++) {
if (!find(visit, v2[i].second.first, v2[i].second.second)) {
result += v2[i].first.first;
q.push(v2[i].first.second);
unionParent(visit, v2[i].second.first, v2[i].second.second);
}
}
output << "Tree edges by Kruskal algorithm: " << result << "\n";
int cnt = q.size();
for (int i = 0; i < cnt; i++) {
output << q.front() << "\n";
q.pop();
}
}
void prim(int n, int m, int s) {
int result = 0;
int tmp = 0;
for (int i = 0; i < n; i++) {
visit[i] = 0;
}
visit[s] = 1;
while (1) {
for (int i = 0; i < m; i++) {
if ((visit[v2[i].second.second] == 0 && visit[v2[i].second.first] == 0) || (visit[v2[i].second.first] == 1 && visit[v2[i].second.second] == 1)) {
continue;
} else {
result += v2[i].first.first;
q.push(v2[i].first.second);
visit[v2[i].second.second] = 1;
visit[v2[i].second.first] = 1;
tmp++;
break;
}
}
if(n-1 == tmp){
break;
}
}
output << "Tree edges by Prim algorithm with starting vertex " << s << ": " << result << "\n";
int cnt = q.size();
for (int i = 0; i < cnt; i++) {
output << q.front() << "\n";
q.pop();
}
}
int main() {
int n, m;
input >> n >> m;
int tmp = m;
int i = 0;
while (m != 0) {
int a, b, c;
input >> a >> b >> c;
v[a].push_back({b, c});
v[b].push_back({a, c});
v2.push_back({{c, i}, {a, b}});
i++;
m--;
}
m = tmp;
sort(v2.begin(), v2.end());
kruskal(n, m);
prim(n, m, 0);
prim(n, m, n/2);
prim(n, m, n-1);
}