Skip to content

Commit 2445453

Browse files
committed
added quentin dataset
1 parent 9f9dc0a commit 2445453

9 files changed

+850
-0
lines changed

_datasets/quentin2024.md

Lines changed: 143 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,143 @@
1+
---
2+
layout: datapage
3+
excerpt: (5 cases)
4+
title: Premixed Flame H2-Air
5+
description: Premixed Flame H2-Air DNS in Slot Burner
6+
header:
7+
teaser: /assets/img/ico_quentin2024.png
8+
# image: /assets/img/quentin2024.png
9+
---
10+
<div style="text-align: center;">
11+
<img src="./assets/img/quentin2024.png" alt="Image 1" style="max-width: 100%;">
12+
</div>
13+
14+
## Description
15+
The configuration is a slot burner at constant pressure $$P = 1$$ atm and fresh gas temperature $$T_u = 300$$ K used to generate a training database for the modeling of subfilter-scale features in lean premixed H$$_2$$-air reacting flows using a CNN [1]. The physical domain consists of a central inlet where a premixed H2-air mixture flows at a bulk velocity $$U_b = 24$$ m/s with velocity fluctuation $$u′= 2.4$$ m/s, surrounded by two laminar coflows where burnt gas flows at a bulk velocity $$U_c = 3.6$$ m/s. The injection of turbulence at the central inlet corresponds to homogeneous and isotropic turbulence using a Passot-Pouquet turbulence spectrum [2] with an integral length scale $$l_t = 2$$ mm. The domain is rectangular with periodic boundary conditions in the z-direction. Adiabatic walls are specified in the y-direction. Both inlets and outlet are specified in the x-direction. This configuration is computed for five different global equivalence ratios $$\phi_g = $$ 0.35, 0.4, 0.5, 0.6 and 0.7. All other parameters are kept constant. The Reynolds number of the central inlet is about 10,000 for all cases.
16+
DNS of the slot burner cases are performed using the AVBP [3] massively parallel code solving the
17+
compressible multi-species Navier-Stokes equations. A third order accurate Taylor–Galerkin scheme is adopted
18+
for discretization of the convective terms [4]. NSCBC [5] are imposed at the inlets (relaxation factor of 1000
19+
s−1) and at the outlet (relaxation factor of 200 s−1). Dynamic viscosity µ follows a power law function of
20+
temperature $$T$$
21+
22+
23+
$$\mu = \mu_0 \left(\frac{T}{T_0}\right)^\gamma$$
24+
25+
with $$\mu_0 = 8.062 × 10−5$$ kg/m.s, $$T_0 = 2.645 \times 10^3$$ K and $$γ = 6.481 \times 10^{−1}$$. Thermal diffusivity is computed
26+
from the viscosity using a constant Prandtl number: $$Pr = 0.66$$. Species diffusivities are computed using
27+
a constant Schmidt number specific for each species. This approach takes into account non-unity
28+
Lewis numbers and preferential diffusion between the different species. It was verified that the errors made by
29+
the simplified transport description are negligible by comparing the results with simulations using a mixture-
30+
averaged transport model [1]. Soret and Dufour transport processes are ignored in the simulations of the present
31+
work. Hydrogen chemical kinetics relies on the San Diego mechanism [6], already successfully used for H2-air
32+
premixed combustion in Coulon et al. [7]. This mechanism comprises 9 species and 21 reactions.
33+
34+
The mesh is a homogeneous Cartesian grid with constant element size $\Delta_x = 80 \mu m$ for $$\phi_g = 0.35, 0.4$$ and
35+
$$0.6$$, and $$\Delta_x = 50 \mu m$$ for $$\phi_g = 0.6\ \mathrm{and}\ 0.7$$. The length of the domain in the x-direction $$L_x$$ is adapted to the length of turbulent the flame brush. It varies from 76 mm for $$\phi_g = 0.35$$ to $$36$$ mm for $$\phi_g= 0.7$$.
36+
37+
## Application
38+
This database was generated to train a CNN to infer H$$_2$$-air burning rates. The data-driven, supervised learning
39+
methodology is described in Malé et al. [1]. It involves using the database, filtered to emulate LES solutions, to train a
40+
CNN to approximate burning rates based on relevant input variables. The emulated LES database comprises the
41+
five different global equivalence ratios of the present DNS database and three different filter sizes. Random crops,
42+
rotations and flips are performed to ensure that the CNN is invariant to translation [8] and has no preferential
43+
orientation. Once trained, the CNN-based model is shown to infer burning rates on full LES solutions never
44+
seen during training with high accuracy. In addition to this, the model is found to infer burning rates on filter
45+
sizes and equivalence ratios other than those used for training. More details can be found in Malé et al. [1]. Code for
46+
training and inference is available via GitLab at https://gitlab.com/male.quentin/cnn_h2flame.
47+
48+
<div style="text-align: center;">
49+
<img src="/assets/img/arch_quentin2024.png" alt="Image 1" style="max-width: 80%;">
50+
</div>
51+
52+
## Quick Info
53+
* Contributors: Quentin Malé
54+
* N<sub>&#632;</sub> = 6 + 9
55+
56+
* <a href="https://doi.org/10.1017/dce.2025.1">DOI</a>
57+
* <a href="./assets/bib/quentin2024.bib">.bib</a>
58+
59+
## Links to different cases
60+
61+
<script src="./assets/js/table.js"></script>
62+
63+
<table align="center">
64+
<tr class="header">
65+
<th style="width:2%;">ID</th>
66+
<th style="width:8%;">$$\phi_g$$</th>
67+
<!-- <th style="width:60%;">TPY</th> -->
68+
<th style="width:8%;">Grid</th>
69+
<th style="width:8%;">Size (GB)</th>
70+
<!-- <th style="width:60%;">Article</th> -->
71+
<th style="width:12%;">Links</th>
72+
</tr>
73+
<tr>
74+
<td align="center"> 0 </td>
75+
<td align="center">0.35</td>
76+
<td align="center">951&times;401&times;201</td>
77+
<td align="center">16</td>
78+
<td align="center">
79+
<a href="https://www.kaggle.com/datasets/blastnet/premixed-flame-slot-burner-dns-h2air-phi035">Kaggle</a>, <a href="./assets/json/quentin2024/premixed-flame-slot-burner-dns-h2air-phi035-info.json">info.json</a><BR>
80+
</td>
81+
</tr>
82+
<tr>
83+
<td align="center"> 1 </td>
84+
<td align="center">0.4</td>
85+
<td align="center">901&times;401&times;201</td>
86+
<td align="center">15</td>
87+
<td align="center">
88+
<a href="https://www.kaggle.com/datasets/blastnet/premixed-flame-slot-burner-dns-h2air-phi04">Kaggle</a>, <a href="./assets/json/quentin2024/premixed-flame-slot-burner-dns-h2air-phi04-info.json">info.json</a><BR>
89+
</td>
90+
</tr>
91+
<tr>
92+
<td align="center"> 2 </td>
93+
<td align="center">0.5</td>
94+
<td align="center">651&times;401&times;201</td>
95+
<td align="center">11</td>
96+
<td align="center">
97+
<a href="https://www.kaggle.com/datasets/blastnet/premixed-flame-slot-burner-dns-h2air-phi05">Kaggle</a>, <a href="./assets/json/quentin2024/premixed-flame-slot-burner-dns-h2air-phi05-info.json">info.json</a><BR>
98+
</td>
99+
</tr>
100+
<tr>
101+
<td align="center"> 3 </td>
102+
<td align="center">0.6</td>
103+
<td align="center">1041&times;641&times;321</td>
104+
<td align="center">31</td>
105+
<td align="center">
106+
<a href="https://www.kaggle.com/datasets/blastnet/premixed-flame-slot-burner-dns-h2air-phi06">Kaggle</a>, <a href="./assets/json/quentin2024/premixed-flame-slot-burner-dns-h2air-phi06-info.json">info.json</a><BR>
107+
</td>
108+
</tr>
109+
<tr>
110+
<td align="center"> 4 </td>
111+
<td align="center">0.7</td>
112+
<td align="center">721&times;641&times;321</td>
113+
<td align="center">45</td>
114+
<td align="center">
115+
<a href="https://www.kaggle.com/datasets/blastnet/premixed-flame-slot-burner-dns-h2air-phi07">Kaggle</a>, <a href="./assets/json/quentin2024/premixed-flame-slot-burner-dns-h2air-phi07-info.json">info.json</a><BR>
116+
</td>
117+
</tr>
118+
</table>
119+
120+
## References
121+
[1] Malé, Q., Lapeyre, C. J., and Noiray, N. (2024). Hydrogen reaction rate modeling based on convolutional
122+
neural network for large eddy simulation. Accepted for publication in Data-Centric Engineering, to appear.
123+
arXiv:2408.16709 [cs.CE].
124+
[2] Passot, T. and Pouquet, A. (1987). Numerical simulation of compressible homogeneous flows in the turbulent
125+
regime. Journal of Fluid Mechanics, 181:441–466.
126+
[3] Gicquel, L. Y., Gourdain, N., Boussuge, J.-F., Deniau, H., Staffelbach, G., Wolf, P., and Poinsot, T. (2011).
127+
High performance parallel computing of flows in complex geometries. Comptes Rendus M´ecanique, 339(2-
128+
3):104–124.
129+
[4] Colin, O. and Rudgyard, M. (2000). Development of High-Order Taylor–Galerkin Schemes for LES. Journal
130+
of Computational Physics, 162(2):338–371.
131+
[5] Poinsot, T. and Lelef, S. (1992). Boundary conditions for direct simulations of compressible viscous flows.
132+
Journal of Computational Physics, 101(1):104–129.
133+
[6] Saxena, P. and Williams, F. A. (2006). Testing a small detailed chemical-kinetic mechanism for the
134+
combustion of hydrogen and carbon monoxide. Combustion and Flame, 145(1-2):316–323.
135+
[7] Coulon, V., Gaucherand, J., Xing, V., Laera, D., Lapeyre, C., and Poinsot, T. (2023). Direct numerical
136+
simulations of methane, ammonia-hydrogen and hydrogen turbulent premixed flames. Combustion and Flame,
137+
256:112933.
138+
[8] Biscione, V. and Bowers, J. S. (2021). Convolutional neural networks are not invariant to translation, but
139+
they can learn to be. Journal of Machine Learning Research, 22(229):1–28.
140+
141+
142+
143+

assets/img/arch_quentin2024.png

131 KB
Loading

assets/img/ico_quentin2024.png

1.75 MB
Loading

assets/img/quentin2024.png

439 KB
Loading
Lines changed: 141 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,141 @@
1+
{
2+
"global": {
3+
"dataset_id": "blastnet/premixed-flame-slot-burner-dns-h2air-phi035",
4+
"Nxyz": [
5+
951,
6+
401,
7+
201
8+
],
9+
"snapshots": 5,
10+
"variables": [
11+
"UX_ms-1",
12+
"UY_ms-1",
13+
"UZ_ms-1",
14+
"P_Pa",
15+
"T_K",
16+
"RHO_kgm-3",
17+
"YH2",
18+
"YH",
19+
"YO2",
20+
"YOH",
21+
"YO",
22+
"YH2O",
23+
"YHO2",
24+
"YH2O2",
25+
"YN2"
26+
],
27+
"compression": "None",
28+
"grid": {
29+
"x": "./grid/X_m.dat",
30+
"y": "./grid/Y_m.dat",
31+
"z": "./grid/Z_m.dat"
32+
},
33+
"numerics": {
34+
"spatial-temporal": "3rd order Taylor-Galerkin",
35+
"diffusive": "2rd-order Galerkin",
36+
"solver": "AVBP"
37+
},
38+
"bc": "Imposed UX, UY, UZ, T and Yk profiles the x-inlets. A premixed H2-air mixture flows in the central inlet at a bulk velocity 24 m/s with velocity fluctuation 2.4 m/s, the temperature is 300 K. The central inlet is surrounded by two laminar coflows where burnt gas at adiabatic flame temperature flows at a bulk velocity 3.6 m/s. The equivalence ratio is 0.35 for all inlets. The injection of turbulence at the central inlet corresponds to homogeneous and isotropic turbulence using a Passot-Pouquet turbulence spectrum with an integral length scale 2 mm. The domain is rectangular with periodic boundary conditions in the z-direction. Adiabatic walls are specified in the y-direction. Both inlets and outlet are specified in the x-direction.",
39+
"ic": "Snapshots are extracted after reaching a statistically stationary state.",
40+
"description": "DNS of turbulent premixed hydrogen-air flame at equivalence ratio 0.35, atmosperic conditions in a slot burner configuration.",
41+
"doi": "https://doi.org/10.1017/dce.2025.1",
42+
"contributors": "Quentin Male"
43+
},
44+
"local": [
45+
{
46+
"id": 0,
47+
"time [s]": 0.0,
48+
"UX_ms-1 filename": "./data/UX_ms-1_id000.dat",
49+
"UY_ms-1 filename": "./data/UY_ms-1_id000.dat",
50+
"UZ_ms-1 filename": "./data/UZ_ms-1_id000.dat",
51+
"P_Pa filename": "./data/P_Pa_id000.dat",
52+
"T_K filename": "./data/T_K_id000.dat",
53+
"RHO_kgm-3 filename": "./data/RHO_kgm-3_id000.dat",
54+
"YH2 filename": "./data/YH2_id000.dat",
55+
"YH filename": "./data/YH_id000.dat",
56+
"YO2 filename": "./data/YO2_id000.dat",
57+
"YOH filename": "./data/YOH_id000.dat",
58+
"YO filename": "./data/YO_id000.dat",
59+
"YH2O filename": "./data/YH2O_id000.dat",
60+
"YHO2 filename": "./data/YHO2_id000.dat",
61+
"YH2O2 filename": "./data/YH2O2_id000.dat",
62+
"YN2 filename": "./data/YN2_id000.dat"
63+
},
64+
{
65+
"id": 1,
66+
"time [s]": 0.002,
67+
"UX_ms-1 filename": "./data/UX_ms-1_id001.dat",
68+
"UY_ms-1 filename": "./data/UY_ms-1_id001.dat",
69+
"UZ_ms-1 filename": "./data/UZ_ms-1_id001.dat",
70+
"P_Pa filename": "./data/P_Pa_id001.dat",
71+
"T_K filename": "./data/T_K_id001.dat",
72+
"RHO_kgm-3 filename": "./data/RHO_kgm-3_id001.dat",
73+
"YH2 filename": "./data/YH2_id001.dat",
74+
"YH filename": "./data/YH_id001.dat",
75+
"YO2 filename": "./data/YO2_id001.dat",
76+
"YOH filename": "./data/YOH_id001.dat",
77+
"YO filename": "./data/YO_id001.dat",
78+
"YH2O filename": "./data/YH2O_id001.dat",
79+
"YHO2 filename": "./data/YHO2_id001.dat",
80+
"YH2O2 filename": "./data/YH2O2_id001.dat",
81+
"YN2 filename": "./data/YN2_id001.dat"
82+
},
83+
{
84+
"id": 2,
85+
"time [s]": 0.004,
86+
"UX_ms-1 filename": "./data/UX_ms-1_id002.dat",
87+
"UY_ms-1 filename": "./data/UY_ms-1_id002.dat",
88+
"UZ_ms-1 filename": "./data/UZ_ms-1_id002.dat",
89+
"P_Pa filename": "./data/P_Pa_id002.dat",
90+
"T_K filename": "./data/T_K_id002.dat",
91+
"RHO_kgm-3 filename": "./data/RHO_kgm-3_id002.dat",
92+
"YH2 filename": "./data/YH2_id002.dat",
93+
"YH filename": "./data/YH_id002.dat",
94+
"YO2 filename": "./data/YO2_id002.dat",
95+
"YOH filename": "./data/YOH_id002.dat",
96+
"YO filename": "./data/YO_id002.dat",
97+
"YH2O filename": "./data/YH2O_id002.dat",
98+
"YHO2 filename": "./data/YHO2_id002.dat",
99+
"YH2O2 filename": "./data/YH2O2_id002.dat",
100+
"YN2 filename": "./data/YN2_id002.dat"
101+
},
102+
{
103+
"id": 3,
104+
"time [s]": 0.006,
105+
"UX_ms-1 filename": "./data/UX_ms-1_id003.dat",
106+
"UY_ms-1 filename": "./data/UY_ms-1_id003.dat",
107+
"UZ_ms-1 filename": "./data/UZ_ms-1_id003.dat",
108+
"P_Pa filename": "./data/P_Pa_id003.dat",
109+
"T_K filename": "./data/T_K_id003.dat",
110+
"RHO_kgm-3 filename": "./data/RHO_kgm-3_id003.dat",
111+
"YH2 filename": "./data/YH2_id003.dat",
112+
"YH filename": "./data/YH_id003.dat",
113+
"YO2 filename": "./data/YO2_id003.dat",
114+
"YOH filename": "./data/YOH_id003.dat",
115+
"YO filename": "./data/YO_id003.dat",
116+
"YH2O filename": "./data/YH2O_id003.dat",
117+
"YHO2 filename": "./data/YHO2_id003.dat",
118+
"YH2O2 filename": "./data/YH2O2_id003.dat",
119+
"YN2 filename": "./data/YN2_id003.dat"
120+
},
121+
{
122+
"id": 4,
123+
"time [s]": 0.008,
124+
"UX_ms-1 filename": "./data/UX_ms-1_id004.dat",
125+
"UY_ms-1 filename": "./data/UY_ms-1_id004.dat",
126+
"UZ_ms-1 filename": "./data/UZ_ms-1_id004.dat",
127+
"P_Pa filename": "./data/P_Pa_id004.dat",
128+
"T_K filename": "./data/T_K_id004.dat",
129+
"RHO_kgm-3 filename": "./data/RHO_kgm-3_id004.dat",
130+
"YH2 filename": "./data/YH2_id004.dat",
131+
"YH filename": "./data/YH_id004.dat",
132+
"YO2 filename": "./data/YO2_id004.dat",
133+
"YOH filename": "./data/YOH_id004.dat",
134+
"YO filename": "./data/YO_id004.dat",
135+
"YH2O filename": "./data/YH2O_id004.dat",
136+
"YHO2 filename": "./data/YHO2_id004.dat",
137+
"YH2O2 filename": "./data/YH2O2_id004.dat",
138+
"YN2 filename": "./data/YN2_id004.dat"
139+
}
140+
]
141+
}

0 commit comments

Comments
 (0)