-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCrossValidate_ProjPred_On_Selected_Data.R
579 lines (464 loc) · 22.4 KB
/
CrossValidate_ProjPred_On_Selected_Data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#note projective prediction is slow with LOO
#vs_flag should switch between calculating
cv_style = 'Naive' # 'KFold' or 'LOO'
vs_flag = FALSE
use_precomputed = 0
# perform nested cross-validation to report on the models
mnum = 'PP'
print("Run proj pred bayes Model Cross Validation...")
model_desc_str = paste(cv_desc,mnum,'_R',as.character(repeats),'_OF',
as.character(outsidefolds), '_IF',
as.character(insidefolds), '_', sep = '')
# Initialize outcome measures
lambda.store <- vector("numeric", length = n_models)
auc_store <- vector("numeric", length = n_models)
brier <- vector("numeric", length = n_models)
sensitivity_store <- vector(mode = "numeric", length = n_models)
specificity_store <- vector(mode = "numeric", length = n_models)
specificity90_store <- list()
specificity95_store <- list()
rocposcases <- vector(mode = "numeric", length = n_models)
includedvars <- list(length = n_models)
roccurve <- vector(mode = "list", length = n_models)
calibration_df = data.frame()
calibration_n_df = data.frame()
#initiate stat model list data structure (don't need to reset when test generalisation)
if (varselect_flag) {
vs_ls <- vector(mode = "list", length = n_models)
}
#Technically the dimension should be columns -1 since we don't include outcome
#in predictions, but intercept is added in list of coefficients
varratios <- as_tibble(matrix(99,nrow = n_models,ncol = dim(train.data)[2] )) #+1 for intcercept
colnames(varratios) <- names(train.data)
names(varratios) = str_replace_all(names(varratios),"_","")
varratios <- rename(varratios, 'Intercept' = 'outcome' )
varnames <- names(varratios)
#store the p-values as glm
varsig <- varratios
#Loop for cross validation
j = 0
repeat_flag = FALSE
print('Before ProjPred CV loop')
while (j < repeats) {
j = j + 1
print(paste('repeat:',j))
print('Pre outside fold loop...')
for (i in 1:outsidefolds) {
ij_idx = outsidefolds*(j - 1) + i
print(paste('repeat:',j, 'fold:', i))
#Segment data by fold using the which() function
#this selects a portion of data as function of number of outerfolds, e.g.
#4 outer folds means 1/4 or 25% of data is used for test, 75% for train
testIndexes <- which(shuffle_index_ls[[j]] == i,arr.ind = TRUE)
#cross validation only on train data for outerfolds
of_crossval.train.data <- train.data[-testIndexes, ]
#Load models computed in the prior bayesian section
StatModel = BAYES_HS_StatModel_ls[[ij_idx]]
if(generalise_flag){
#test CV on dataset to generalise
of_crossval.test.data <- crossval.test.data
test_backup = of_crossval.test.data
#ProjectivePrediction_Compuite.R does some data type correction as BRMS/ProjPred are picky
names(test_backup) = str_replace_all(names(test_backup),"_","")
for (ii in c(1:dim(test_backup)[2])) {
test_backup[,ii] <- as.numeric(test_backup[,ii])
}
vs <- vs_ls[[ij_idx]]
refmodel <- get_refmodel(StatModel)
} else{
#test on the portion left out for CV
of_crossval.test.data <- train.data[testIndexes, ]
#note projpred needs numeric data so tr_backup and test_backup
#are transformed via ProjectivePrediction_Compute.R, any further tests
#need to use _backup data and not the of_crossval.
tr_backup = of_crossval.train.data
test_backup = of_crossval.test.data
names(tr_backup) = str_replace_all(names(tr_backup),"_","")
names(test_backup) = str_replace_all(names(test_backup),"_","")
#recast as logical
for (ii in c(1:dim(test_backup)[2])) {
test_backup[,ii] <- as.numeric(test_backup[,ii])
tr_backup[,ii] <- as.logical(tr_backup[,ii])
}
#this runs brmfit and also variable selection
result = tryCatch({
source('ProjectivePrediction_Compute.R')
}, error = function(error_condition) {
return(FALSE)
})
#save cv selection for test with generalisation set
vs_ls[[ij_idx]] <- vs
}
#We make predictions with the projected submodels. For point estimates we can use method
#proj_predict. Test inputs can be provided using the keyword newdata.
#It also the test targets ynew are provided in newdata, then the function evaluates
#the log predictive density at these points. For instance, the following computes
#the mean of the predictive distribution and evaluates the log density at the training
#points using the most relevant variables.
nv <- length(solterms_ls)
pp_str = paste('ProjPred_V',nv, '_', sep = '')
proj <- project(vs, solution_terms = solterms_ls,ns = 2000)
print('pre-projection')
proj <- project(vs, nterms = nt_max,ns = 2000)
pred = proj_predict(proj, newdata = test_backup)
#projpred does N draws from the model, these are averaged for the overall response
probabilities_of <- colMeans(pred)
# Test the best predicted lambda on the remaining data in the outer fold
predicted.classes_of <- as.logical(probabilities_of >= 0.5) #prediction from model
#model calibration bin each set of probabilites and then count the percent of our
#patients that fall in that category
cal_interval <- 0.1
zz = 0
for (kk in seq(0,1 - cal_interval,cal_interval)) {
zz = zz + 1
#which probabilites are in this interval
if (kk == 1) { kk = 1.1} #adjust for last bin to include 1
#find which patients are in this bin
tmp_prob_bin_idx <- (probabilities_of >= kk) & (probabilities_of < kk+cal_interval)
#of the patients in the bin what % had the outcome
cal_p = sum(of_crossval.test.data$outcome[tmp_prob_bin_idx])/sum(tmp_prob_bin_idx)
#save number of interval and %cases in this bin
#calibration_df[zz,1] = kk
#what is the % true outcome for this particular bin
calibration_df[ij_idx,zz] = cal_p
calibration_n_df[ij_idx,zz] = sum(tmp_prob_bin_idx)
}
# Model accuracy
out_acc <- mean(predicted.classes_of == of_crossval.test.data$outcome)
# Sensitivity and specificity measures
conf_matrix_of <- table(predicted.classes_of, of_crossval.test.data$outcome)
tab <- matrix(c(0,0,0,0), ncol = 2, byrow = TRUE)
colnames(tab) <- c('0','1')
rownames(tab) <- c('0','1')
tab <- as.table(tab)
#sometimes the conf matrix is incomplete copy what we do have to tab
tryCatch(tab[1,1] <- conf_matrix_of[1,1], error = function(e) {tab[1,1] <- 0 } )
tryCatch(tab[2,1] <- conf_matrix_of[2,1], error = function(e) {tab[2,1] <- 0 } )
tryCatch(tab[1,2] <- conf_matrix_of[1,2], error = function(e) {tab[1,2] <- 0 } )
tryCatch(tab[2,2] <- conf_matrix_of[2,2], error = function(e) {tab[2,2] <- 0 } )
sensitivity_store[ij_idx] <- as.numeric(sensitivity(tab)['.estimate'])
specificity_store[ij_idx] <- as.numeric(specificity(tab)['.estimate'])
# save ROC curve
roccurve[[ij_idx]] <- roc(outcome ~ c(probabilities_of),
data = of_crossval.test.data)
rocposcases[[ij_idx]] <- sum(of_crossval.test.data['outcome'])
#we wnat to save specificity at 90 & 95% sensitivity - the ROC curve stores sensitivities
#so we need to find the index matching the above, senistivity is stored decreasing from one
#so if we subtract our threshold sensitivity we can take the first minimum
s_thresh = 0.90
pos_min = roccurve[[ij_idx]]$sensitivities[ (roccurve[[ij_idx]]$sensitivities - s_thresh) > 0 ] - s_thresh
#we need the first threhold that is at least 90/95% sensitivity (but also need to exclude
#values just below threshold that might be a smaller min)
pos_min_rev_idx = seq(length(pos_min),1) #reverse index
sens_idx_90 = pos_min_rev_idx[which.min(rev(pos_min))]
s_thresh = 0.95
pos_min = roccurve[[ij_idx]]$sensitivities[ (roccurve[[ij_idx]]$sensitivities - s_thresh) > 0 ] - s_thresh
pos_min_rev_idx = seq(length(pos_min),1) #reverse index
sens_idx_95 = pos_min_rev_idx[which.min(rev(pos_min))]
#now we can assign values for specifity at 90 & 95% sensitivity
#after finishing the loops these lists need to be converted to matrices
specificity90_store[[ij_idx]] <- c(roccurve[[ij_idx]]$thresholds[sens_idx_90],
roccurve[[ij_idx]]$sensitivities[sens_idx_90],
roccurve[[ij_idx]]$specificities[sens_idx_90])
specificity95_store[[ij_idx]] <- c(roccurve[[ij_idx]]$thresholds[sens_idx_95],
roccurve[[ij_idx]]$sensitivities[sens_idx_95],
roccurve[[ij_idx]]$specificities[sens_idx_95])
auc_store[ij_idx] <- auc(roccurve[[ij_idx]])
#Brier against train data (BRM? doesn't have this like GLM?)
out_brier_train <- NA #BrierScore(StatModel)
# Brier score against test data
#f_t <- predicted.classes_of
#o_t <- of_crossval.test.data$outcome
brier[ij_idx] <- mean(((f_t) - o_t)^2)
#save a record of the odds ratios VarRatios for ProjPred (not store
#in obvious place accesible via coef)
tmp = summary(StatModel)[14]
stat_tmp <- tmp$fixed['Estimate']
#VarRatios for ProjPred
for (kk in 1:dim(stat_tmp)[1]) {
varratios[ij_idx, row.names(stat_tmp)[kk] ] <- exp(stat_tmp[kk,])
}
##for (kk in 1:dim(stat_tmp)[1]) {
## #the p-values for each
## varsig[ij_idx, row.names(stat_tmp)[kk] ] <- stat_tmp[[kk,4]]
##}
if (0) { #Verbose Mode
print('Model Accuracy')
print(out_acc)
print('Sensitivity')
print(sensitivity_store[ij_idx])
print('Specificity')
print(specificity_store[ij_idx])
print('Brier score against test data (fold holdout)')
print(brier[ij_idx])
print('Brier Score against Train Data')
print(out_brier_train)
}
}
} #Main Cross-validation loop
source(paste(work_path,'CalibrationPlot_CV.R', sep = ''))
auc_quantile <- as.numeric(quantile(auc_store, c(.025, .50, .975)))
brier_quantile <- as.numeric(quantile(brier, c(.025, .50, .975)))
lambda.store_quantile <- as.numeric(quantile(lambda.store, c(.025, .50, .975)))
sensitivity_quantile <- as.numeric(quantile(sensitivity_store, c(.025, .50, .975)))
specificity_quantile <- as.numeric(quantile(specificity_store, c(.025, .50, .975)))
#get quantiles for specificity at particlular sensitiivity
spec90_mat = do.call(cbind,specificity90_store)
specificity90_thresh_quantile <- as.numeric(quantile(spec90_mat[1,], c(.025, .50, .975)))
specificity90_sens_quantile <- as.numeric(quantile(spec90_mat[2,], c(.025, .50, .975)))
specificity90_spec_quantile <- as.numeric(quantile(spec90_mat[3,], c(.025, .50, .975)))
spec95_mat = do.call(cbind,specificity95_store)
specificity95_thresh_quantile <- as.numeric(quantile(spec95_mat[1,], c(.025, .50, .975)))
specificity95_sens_quantile <- as.numeric(quantile(spec95_mat[2,], c(.025, .50, .975)))
specificity95_spec_quantile <- as.numeric(quantile(spec95_mat[3,], c(.025, .50, .975)))
sink(paste(save_path, 'Model_CV_', mnum, '_', model_desc_str, 'summary.txt',sep = ''))
print("Mean AUC")
print(mean(auc_store))
print('Quantile')
print(auc_quantile)
print('t-test AUC')
print(t.test(auc_store))
print('t-test CIs')
print(t.test(auc_store)$"conf.int")
#This problem doesn't occur with GLM - LASSO sometimes picks similar models
#that aren't very good - so predictions are all false...
if ( sd(brier) != 0 ) {
print('Mean Brier')
mean(brier)
print('Quantile Brier')
print(brier_quantile)
print('t-test Brier Score')
t.test(brier)
print('t-test Brier CIs')
t.test(brier)$"conf.int"
} else {
print('Brier score is constant, sd==0')
mean(brier) }
print('Mean Lambda Score')
mean(lambda.store)
print('Quantile Lambda Score')
print(lambda.store_quantile)
print('t-test Lambda Score')
t.test(lambda.store)
print('t-test Lambda Score CIs')
t.test(lambda.store)$"conf.int"
sink()
pdf(paste(save_path, 'Model_CV_', mnum, '_', model_desc_str, 'AUC_Histogram.pdf',sep = ''))
hist(auc_store,plot = TRUE, breaks = 25, xlab = 'Area Under the Curve (AUC)',
main = 'Distibution of AUC Scores')
abline(v = mean(auc_store), col = "red")
abline(v = median(auc_store), col = "blue")
dev.off()
pdf(paste(save_path, 'Model_CV_', mnum, '_',model_desc_str, 'BrierScore_Histogram.pdf',sep = ''))
hist(brier,plot = TRUE)
dev.off()
pdf(paste(save_path, 'Model_CV_', mnum, '_', model_desc_str, 'Lambda_Histogram.pdf',sep = ''))
hist(lambda.store,plot = TRUE)
dev.off()
# plot the ROC curves for all models to show uncertainty
myPlot <- ggroc(roccurve, legacy.axes = T) +
geom_abline(slope = 1 ,intercept = 0) + # add identity line
theme(
panel.background = element_blank(),
legend.position = "none",
axis.title.x = element_text(size = 18, face = 'bold'),
axis.title.y = element_text(size = 18, face = 'bold'),
panel.border = element_rect(size = 2, fill = NA),
axis.text.x = element_text(size = 14, face = 'bold'),
axis.text.y = element_text(size = 14, face = 'bold')) +
xlab(paste('[Reading:', readingwanted_str, '] 1 - Specificity (FP)' ,sep = '')) +
ylab(paste('[Day: ', dateRange, '] Sensitivity (TP)',sep = '')) +
scale_x_continuous(breaks = seq(0,1,0.25), labels = seq(0,1,0.25)) +
scale_y_continuous(breaks = seq(0,1,0.25), labels = seq(0,1,0.25)) +
geom_text(x = 0.1, y = 1, colour = "black", size = 6,
label = paste('Median AUC: ', sprintf("%0.2f",median(auc_store)), sep = '') ) +
geom_text(x = 0.11, y = 0.95, colour = "black", size = 5,
label = paste('Min/Max/Med: ', sprintf("%d,%d,%0.1f",
min(rocposcases),
max(rocposcases),
median(rocposcases)),
sep = '') )
myPlot
ggsave(paste(save_path, 'Model_CV_', mnum, '_', model_desc_str, 'ROCs_for_',
as.character(n_models), '_models.pdf',sep = ''), device = 'pdf',
width = 20, height = 20, units = 'cm', dpi = 300)
#this seems to be a hack but we ultimately want to make a subplot with all of the CV results
#across parameters. R does allow subplots but the style is a bit confusing (at least for me atm)
#if you don't have all of the data ready.
#It's easier to save individually named subplots and then assemble manually -
#There must be a better way to do this - revisit
assign( paste('roc_cv_p_', p_str, '_', dateRange, '_',outcomeselection,
'_',readingwanted,sep = ''), myPlot)
#---------------------------
# Stability analysis-using data gathered from above nested folding
#---------------------------
print("Run Stability Analysis...")
# Initialize vectors and arrays
# Count of the number of of times each variable is used in a model
varcount <- vector("numeric", length = dim(varratios)[2])
# List of the total number of variables in each model
variablesinmodel <- vector("numeric", length = n_models)
# A matrix with model index versus inclusion of each variable in that model
modelvarmatrix = array(0L, c(n_models, dim(varratios)[2]))
# List of the value of the 'events per variable' in each model
EPV <- vector("numeric", length = n_models)
# List of the frequency of pairwise inclusion of each variable over all models
freqpairs <- array(0L, c(dim(varratios)[2],dim(varratios)[2]))
# cycle through each model and each variable counting when variable is used
# i.e. variable value from LASSO =\= 1.
# Also count the number of variables used (=\= 1) in each model in total
#for (i in 1:n_models) {
# varratios[[i]] <- round(varratios[[i]], digits = 3)
#}
# cycle through each model and each variable counting when variable is used
# i.e. variable value from LASSO =\= 1.
# Also count the number of variables used (=\= 1) in each model in total
for (i in 1:n_models) {
varratios[i,] <- round(varratios[i,], digits = 3)
}
for (i in 1:(n_models)) {
for (j in 1:dim(varratios)[2]) {
if (varratios[i,j] < 0.999 | varratios[i,j] > 1.001) {
varcount[j] <- varcount[j] + 1
variablesinmodel[i] <- variablesinmodel[i] + 1
modelvarmatrix[i,j] <- 1
}
}
EPV[i] <- eventsnumber/variablesinmodel[i]
}
sink(paste(save_path, 'Model_CV_', mnum, '_',model_desc_str,
'Stability_Analysis.txt',sep = ''))
# (i) Range and mean of the events per variable (EPV)
#The EPV ratio, computed from the number of candidate variables,
#accompanied by a warning note if a user attempts to invoke variable
#selection if EPV is lower than 25
print('Events per variable min')
print(min(EPV)) # If <25 then need a quick warning and may need to state the EPV
print('Events per variable max')
print(max(EPV))
print('Events per variable mean')
print(mean(EPV))
# (iii) Inclusion frequencies for each variable
#Bootstrap inclusion frequencies for each candidate variable
#(not only the selected ones)
# Make histogram showing the number of variables included in each model
pdf(paste(save_path, 'Model_CV_', mnum, '_', model_desc_str,
'VariablesPerModel_Histogram.pdf',sep = ''))
hist(variablesinmodel,
main = paste('Distribution of Number of variables selected over',
as.character(n_models),'models',sep = ' '),
xlab = "Number of variables")
dev.off()
# Make a bar plot of the included variables
pdf(file = paste(save_path, 'Model_CV_', mnum, '_', model_desc_str,
'Stability_VariableFrequency.pdf',sep = ''), width = 12,
height = 6)
par(mar = c(10,10,10,10),mai = c(2,1,1,1))
barplotstab <- barplot(varcount/(n_models)*100,
main = 'Distribution of Variables Selected',
ylab = "Frequency (%)", names.arg = varnames,
las = 2, cex.names = 0.6, horiz = FALSE )
abline(h = 50)
abline(h = 20, col = "red")
dev.off()
# (iv) The RMSD of the bootstrapped regression coefficients compared to the
#regression coefficients of the global model is given We propose that
#software output should at least contain an "RMSD ratio," which is the
#RMSD divided by the standard error of beta
# (v) Relative bias conditional on selection, computed as and BIF denoting
#the mean bootstrapped estimate, the global model estimate, and the
#bootstrap inclusion frequency of an IV,respectively
# (vi) Most commonly chosen models
#The bootstrap model selection frequencies for the finally selected model
#and the most often selected models, for example the list of models with
#cumulative frequency of at least 80%, or the list of 20 top-ranked models,
#whichever list is shorter.
# keep only unique rows (models) in a new matrix and make a copy for manipulating
modelvarmatrixunique <- unique.matrix(modelvarmatrix)
tempmatrix <- unique.matrix(modelvarmatrix)
# Count of the frequency of each model used
modelcount <- vector("numeric", length = nrow(modelvarmatrixunique))
for (i in 1:nrow(modelvarmatrixunique)) {
for (j in 1:nrow(modelvarmatrix)) {
if (all(modelvarmatrixunique[i,] == modelvarmatrix[j,])) {
modelcount[i] <- modelcount[i] + 1
}
}
}
# Work out the proportion of times each model is chosen overall
modelprop <- (modelcount/(n_models))*100
nmods <- length(modelprop)
#Heinze paper says to only conisder top 20 for brevity (if you have that many)
if (nmods > 20) {
nmods <- 20
}
# sort and keep the index value for the sorting procedure
modelprop <- sort(modelprop,decreasing = TRUE, index.return = TRUE)
# apply sorting procedure to the matrix to match up the proportions
for (i in 1:length(modelprop$ix)) {
tempmatrix[i,] = modelvarmatrixunique[modelprop$ix[i],]
}
modelvarmatrixunique <- tempmatrix
# determine if need first 20 or 80% cumulative total - 62%
# as first 20 results does not comprise 80% of the cumulative models,
#we should present only the first 20 models
print(paste('Sum-ModelProp % first', nmods,'most common'))
print(sum(modelprop$x[1:nmods]))
sink()
# add in cumulative totals
for (i in 1:nmods) {
modelprop$cummulative[i] <- sum(modelprop$x[1:i])
}
# List of the models of interest, with proportion and cumulative proportions
ModelList <- array(0L, c(nmods,(ncol(modelvarmatrixunique) + 2)))
ModelList[1:nmods,1:ncol(modelvarmatrixunique)] <- modelvarmatrixunique[1:nmods,]
ModelList[1:nmods,(ncol(modelvarmatrixunique) + 1)] <- modelprop$x[1:nmods]
ModelList[1:nmods,(ncol(modelvarmatrixunique) + 2)] <- modelprop$cummulative[1:nmods]
colnames(ModelList) <- c(varnames,"Prop", "Cummulative")
# (vii) Pairwise variable frequencies
#A matrix with pairwise inclusion frequencies, which are suitably summarized,
#for example as odds ratios obtained by log-linear analysis (see Royston &
#Sauerbrei, 2003) or as "significant" pairwise over- or under- selection
for (i in 1:(n_models)) {
for (j in 1:length(dim(varratios)[2])) {
for (k in 1:length(dim(varratios)[2])) {
if (modelvarmatrix[i,j] == 1 & modelvarmatrix[i,k] == 1) {
freqpairs[j,k] <- freqpairs[j,k] + 1
}
}
}
}
#Save varratios to examine -- first convert vector list to tibble
varratios_df <- data.frame()
for (ii in 1:length(varratios)) {
tmp <- varratios[[ii]]
for (jj in 1:length(tmp)) {
varratios_df[ii,jj] <- tmp[jj]
}
}
colnames(varratios_df) <- varnames
write.csv(varratios_df,paste(save_path,'BAYES_VarRatios.csv', sep = ''))
#add in variables details about model setup
varratios_stat_df[m_ctr,1] <- outcome_str
varratios_stat_df[m_ctr,2] <- readingwanted_str
varratios_stat_df[m_ctr,3] <- dateRange
#prepare summary of var ratios depending on model stability
for (ii in 1:dim(varratios_df)[2]) {
#if majority of models have this column as significant then get stats
if ( sum(varratios_df[,ii] > 1.01 | varratios_df[,ii] < 0.99) > 50) {
#for frequent (>50) coefficients, save the meadian value
varratios_stat_df[m_ctr, ii + 3] <- summary(varratios_df[,ii])[[3]]
} else {
varratios_stat_df[m_ctr, ii + 3] <- NA
}
}
#note this is a compendium - we don't need to save each loop iteration but do so just in case
colnames(varratios_stat_df) <- varnames
write.csv(varratios_stat_df,paste(output_path,'BAYES_MedianVarRatios_Compendium.csv', sep = ''))
colnames(freqpairs) <- varnames
rownames(freqpairs) <- varnames
pdf(paste(save_path, 'Model_CV_', mnum, '_', model_desc_str,
'variable_selection_correlation_stability.pdf',sep = ''))
# correlation plot CURRENTLY MESSY AND MORE ROBUST MEASURES ARE NEEDED
corrplot(cor(freqpairs), method = "number",number.cex = 0.2,tl.cex = 0.35)
dev.off()