-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
211 lines (186 loc) · 7.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import warnings
from typing import List
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
import math
import torch
import pytorch_lightning as pl
class EMAWeightUpdate:
"""
Weight updates for moving average encoder (e.g. teacher). Pl_module is expected to contain three attributes:
Updates the target_network params using an exponential moving average update rule weighted by tau.
Tau parameter is increased from its base value to 1.0 with every training step scheduled with a cosine function.
global_step correspond to the total number of sgd updates expected to happen throughout the training.
Target network is updated at the end of each SGD update on training batch.
"""
def __init__(self, initial_tau: float = 0.995, n_optimizer=1):
"""
Args:
initial_tau: starting tau. Auto-updates with every training step
"""
super().__init__()
self.initial_tau = initial_tau
self.current_tau = initial_tau
# work around because PL counts one step per optimiser.
self.n_optimizer = n_optimizer
def update_tau(self, pl_module: pl.LightningModule, trainer: pl.Trainer) -> float:
max_steps = len(trainer.train_dataloader) * trainer.max_epochs # type: ignore
real_global_step = pl_module.global_step // self.n_optimizer
assert (real_global_step / max_steps) < 1.0
# max_steps = trainer.max_steps
tau = (
1
- (1 - self.initial_tau)
* (math.cos(math.pi * real_global_step / max_steps) + 1)
/ 2
)
self.current_tau = tau
return tau
def update_weights(
self, online_net: torch.nn.Module, target_net: torch.nn.Module
) -> None:
# apply MA weight update
for current_params, ma_params in zip(
online_net.parameters(), target_net.parameters()
):
up_weight, old_weight = (
current_params.data.to(ma_params.data.device),
ma_params.data,
)
ma_params.data = (
old_weight * self.current_tau + (1 - self.current_tau) * up_weight
)
def update_target_model(self, online_net, target_net, pl_module, trainer):
with torch.no_grad():
self.update_weights(online_net, target_net)
self.update_tau(pl_module, trainer)
# https://github.com/Lightning-Universe/lightning-bolts/blob/master/src/pl_bolts/optimizers/lr_scheduler.py#L12
class LinearWarmupCosineAnnealingLR(_LRScheduler):
"""Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_lr and
base_lr followed by a cosine annealing schedule between base_lr and eta_min.
.. warning::
It is recommended to call :func:`.step()` for :class:`LinearWarmupCosineAnnealingLR`
after each iteration as calling it after each epoch will keep the starting lr at
warmup_start_lr for the first epoch which is 0 in most cases.
.. warning::
passing epoch to :func:`.step()` is being deprecated and comes with an EPOCH_DEPRECATION_WARNING.
It calls the :func:`_get_closed_form_lr()` method for this scheduler instead of
:func:`get_lr()`. Though this does not change the behavior of the scheduler, when passing
epoch param to :func:`.step()`, the user should call the :func:`.step()` function before calling
train and validation methods.
Example:
>>> import torch.nn as nn
>>> from torch.optim import Adam
>>> #
>>> layer = nn.Linear(10, 1)
>>> optimizer = Adam(layer.parameters(), lr=0.02)
>>> scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=10, max_epochs=40)
>>> # the default case
>>> for epoch in range(40):
... # train(...)
... # validate(...)
... scheduler.step()
>>> # passing epoch param case
>>> for epoch in range(40):
... scheduler.step(epoch)
... # train(...)
... # validate(...)
"""
def __init__(
self,
optimizer: Optimizer,
warmup_epochs: int,
max_epochs: int,
warmup_start_lr: float = 2e-6,
eta_min: float = 5e-6,
last_epoch: int = -1,
) -> None:
"""
Args:
optimizer (Optimizer): Wrapped optimizer.
warmup_epochs (int): Maximum number of iterations for linear warmup
max_epochs (int): Maximum number of iterations
warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0.
eta_min (float): Minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
"""
self.warmup_epochs = warmup_epochs
self.max_epochs = max_epochs
self.warmup_start_lr = warmup_start_lr
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self) -> List[float]:
"""Compute learning rate using chainable form of the scheduler."""
if not self._get_lr_called_within_step:
warnings.warn(
"""
To get the last learning rate computed by the scheduler;
please use `get_last_lr()`.
""",
UserWarning,
)
if self.last_epoch == 0:
return [self.warmup_start_lr] * len(self.base_lrs)
if self.last_epoch < self.warmup_epochs:
return [
group["lr"]
+ (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1)
for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
]
if self.last_epoch == self.warmup_epochs:
return self.base_lrs
if (self.last_epoch - 1 - self.max_epochs) % (
2 * (self.max_epochs - self.warmup_epochs)
) == 0:
return [
group["lr"]
+ (base_lr - self.eta_min)
* (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs)))
/ 2
for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
]
return [
(
1
+ math.cos(
math.pi
* (self.last_epoch - self.warmup_epochs)
/ (self.max_epochs - self.warmup_epochs)
)
)
/ (
1
+ math.cos(
math.pi
* (self.last_epoch - self.warmup_epochs - 1)
/ (self.max_epochs - self.warmup_epochs)
)
)
* (group["lr"] - self.eta_min)
+ self.eta_min
for group in self.optimizer.param_groups
]
def _get_closed_form_lr(self) -> List[float]:
"""Called when epoch is passed as a param to the `step` function of the scheduler."""
if self.last_epoch < self.warmup_epochs:
return [
self.warmup_start_lr
+ self.last_epoch
* (base_lr - self.warmup_start_lr)
/ (self.warmup_epochs - 1)
for base_lr in self.base_lrs
]
return [
self.eta_min
+ 0.5
* (base_lr - self.eta_min)
* (
1
+ math.cos(
math.pi
* (self.last_epoch - self.warmup_epochs)
/ (self.max_epochs - self.warmup_epochs)
)
)
for base_lr in self.base_lrs
]