-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME.html
935 lines (925 loc) · 114 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="spabundance-">spAbundance
<a href="https://www.doserlab.com/files/spabundance-web/"><img role="img" src="" align="right" height="139" width="120" /></a></h1>
<p><a href="https://CRAN.R-project.org/package=spAbundance"><img role="img" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxMDgiIGhlaWdodD0iMjAiIGFyaWEtbGFiZWw9IkNSQU4gZG93bmxvYWRzIDQxODYiPgogIDxsaW5lYXJHcmFkaWVudCBpZD0iYiIgeDI9IjAiIHkyPSIxMDAlIj4KICAgIDxzdG9wIG9mZnNldD0iMCIgc3RvcC1jb2xvcj0iI2JiYiIgc3RvcC1vcGFjaXR5PSIuMSIvPgogICAgPHN0b3Agb2Zmc2V0PSIxIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgPC9saW5lYXJHcmFkaWVudD4KICA8bWFzayBpZD0iYSI+CiAgICA8cmVjdCB3aWR0aD0iMTA4IiBoZWlnaHQ9IjIwIiByeD0iMyIgZmlsbD0iI2ZmZiIvPgogIDwvbWFzaz4KICA8ZyBtYXNrPSJ1cmwoI2EpIj48cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDcwdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjMDA3ZWM2IiBkPSJNNzAgMGgzOHYyMEg3MHoiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoMTA4djIwSDB6Ii8+CiAgPC9nPgogIDxnIGZpbGw9IiNmZmYiIHRleHQtYW5jaG9yPSJtaWRkbGUiCiAgICAgZm9udC1mYW1pbHk9IkRlamFWdSBTYW5zLFZlcmRhbmEsR2VuZXZhLHNhbnMtc2VyaWYiIGZvbnQtc2l6ZT0iMTEiPgogICAgPHRleHQgeD0iMzYiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgZG93bmxvYWRzCiAgICA8L3RleHQ+CiAgICA8dGV4dCB4PSIzNiIgeT0iMTQiPgogICAgICBkb3dubG9hZHMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9Ijg4IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIDQxODYKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9Ijg4IiB5PSIxNCI+CiAgICAgIDQxODYKICAgIDwvdGV4dD4KICA8L2c+Cjwvc3ZnPg==" /></a>
<a href="https://CRAN.R-project.org/package=spAbundance"><img role="img" aria-label="CRAN" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjEuMyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4xLjMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMS4zCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" alt="CRAN" /></a>
<a href="https://codecov.io/gh/biodiverse/spAbundance?branch=main"><svg id="svg_0751cb25c61484fc1cb4" role="img" aria-label="Codecov test coverage" alt="Codecov test coverage" width="137" height="20" viewBox="0 0 137 20">
<linearGradient id="svg_0751cb25c61484fc1cb4_b" x2="0" y2="100%">
<stop offset="0" stop-color="#bbb" stop-opacity=".1"></stop>
<stop offset="1" stop-opacity=".1"></stop>
</linearGradient>
<mask id="svg_0751cb25c61484fc1cb4_a">
<rect width="137" height="20" rx="3" fill="#fff" />
</mask>
<g mask="url(#svg_0751cb25c61484fc1cb4_a)">
<path fill="#555" d="M0 0h76v20H0z" />
<path fill="#9f9f9f" d="M76 0h61v20H76z" />
<path fill="url(#svg_0751cb25c61484fc1cb4_b)" d="M0 0h137v20H0z" />
</g>
<g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11">
<text x="46" y="15" fill="#010101" fill-opacity=".3">codecov</text>
<text x="46" y="14">codecov</text>
<text x="105.5" y="15" fill="#010101" fill-opacity=".3">unknown</text>
<text x="105.5" y="14">unknown</text>
</g>
<svg viewBox="161 -8 60 60">
<path d="M23.013 0C10.333.009.01 10.22 0 22.762v.058l3.914 2.275.053-.036a11.291 11.291 0 0 1 8.352-1.767 10.911 10.911 0 0 1 5.5 2.726l.673.624.38-.828c.368-.802.793-1.556 1.264-2.24.19-.276.398-.554.637-.851l.393-.49-.484-.404a16.08 16.08 0 0 0-7.453-3.466 16.482 16.482 0 0 0-7.705.449C7.386 10.683 14.56 5.016 23.03 5.01c4.779 0 9.272 1.84 12.651 5.18 2.41 2.382 4.069 5.35 4.807 8.591a16.53 16.53 0 0 0-4.792-.723l-.292-.002a16.707 16.707 0 0 0-1.902.14l-.08.012c-.28.037-.524.074-.748.115-.11.019-.218.041-.327.063-.257.052-.51.108-.75.169l-.265.067a16.39 16.39 0 0 0-.926.276l-.056.018c-.682.23-1.36.511-2.016.838l-.052.026c-.29.145-.584.305-.899.49l-.069.04a15.596 15.596 0 0 0-4.061 3.466l-.145.175c-.29.36-.521.666-.723.96-.17.247-.34.513-.552.864l-.116.199c-.17.292-.32.57-.449.824l-.03.057a16.116 16.116 0 0 0-.843 2.029l-.034.102a15.65 15.65 0 0 0-.786 5.174l.003.214a21.523 21.523 0 0 0 .04.754c.009.119.02.237.032.355.014.145.032.29.049.432l.01.08c.01.067.017.133.026.197.034.242.074.48.119.72.463 2.419 1.62 4.836 3.345 6.99l.078.098.08-.095c.688-.81 2.395-3.38 2.539-4.922l.003-.029-.014-.025a10.727 10.727 0 0 1-1.226-4.956c0-5.76 4.545-10.544 10.343-10.89l.381-.014a11.403 11.403 0 0 1 6.651 1.957l.054.036 3.862-2.237.05-.03v-.056c.006-6.08-2.384-11.793-6.729-16.089C34.932 2.361 29.16 0 23.013 0" fill="#F01F7A" fill-rule="evenodd" />
</svg></a></p>
<p><code>spAbundance</code> fits univariate (i.e., single-species) and
multivariate (i.e., multi-species) spatial N-mixture models,
hierarchical distance sampling models, and generalized linear mixed
models using Markov chain Monte Carlo (MCMC). Spatial models are fit
using Nearest Neighbor Gaussian Processes (NNGPs) to facilitate model
fitting to large spatial datasets. <code>spAbundance</code> uses
analogous syntax to its “sister package” <a href="https://www.doserlab.com/files/spoccupancy-web/">spOccupancy</a>
(Doser et al. 2022). Below we provide a very brief introduction to some
of the package’s functionality, and illustrate just one of the model
fitting functions. For more information, see the resources referenced at
the bottom of this page and the “Articles” tab at the top of the page.
Please also consider joining the <a href="https://groups.google.com/g/spocc-spabund-users"><code>spAbundance</code>
and <code>spOccupancy</code> users google group</a>.</p>
<h2 id="installation">Installation</h2>
<p>You can install the released version of <code>spAbundance</code> from
<a href="https://CRAN.R-project.org">CRAN</a> with</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"spAbundance"</span>)</span></code></pre></div>
<p>To download the development version of the package, you can use
<code>devtools</code> as follows:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>devtools<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"biodiverse/spAbundance"</span>)</span></code></pre></div>
<p>Note that because we implement the MCMC in C++, you will need a C++
compiler on your computer to install the package from GitHub. To compile
C++ on Windows, you can install <a href="https://cran.r-project.org/bin/windows/Rtools/"><code>RTools</code></a>.
To compile C++ on a Mac, you can install <code>XCode</code> from the Mac
app store.</p>
<h2 id="functionality">Functionality</h2>
<table>
<thead>
<tr class="header">
<th><code>spAbundance</code> Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>DS()</code></td>
<td>Single-species hierarchical distance sampling (HDS) model</td>
</tr>
<tr class="even">
<td><code>spDS()</code></td>
<td>Single-species spatial HDS model</td>
</tr>
<tr class="odd">
<td><code>msDS()</code></td>
<td>Multi-species HDS model</td>
</tr>
<tr class="even">
<td><code>lfMsDS()</code></td>
<td>Multi-species HDS model with species correlations</td>
</tr>
<tr class="odd">
<td><code>sfMsDS()</code></td>
<td>Multi-species spatial HDS model with species correlations</td>
</tr>
<tr class="even">
<td><code>NMix()</code></td>
<td>Single-species N-mixture model</td>
</tr>
<tr class="odd">
<td><code>spNMix()</code></td>
<td>Single-species spatial N-mixture model</td>
</tr>
<tr class="even">
<td><code>msNMix()</code></td>
<td>Multi-species N-mixture model</td>
</tr>
<tr class="odd">
<td><code>lfMsNMix()</code></td>
<td>Multi-species N-mixture model with species correlations</td>
</tr>
<tr class="even">
<td><code>sfMsNMix()</code></td>
<td>Multi-species spatial N-mixture model with species correlations</td>
</tr>
<tr class="odd">
<td><code>abund()</code></td>
<td>Univariate GLMM</td>
</tr>
<tr class="even">
<td><code>spAbund()</code></td>
<td>Univariate spatial GLMM</td>
</tr>
<tr class="odd">
<td><code>svcAbund()</code></td>
<td>Univariate spatially-varying coefficient GLMM</td>
</tr>
<tr class="even">
<td><code>msAbund()</code></td>
<td>Multivariate GLMM</td>
</tr>
<tr class="odd">
<td><code>lfMsAbund()</code></td>
<td>Multivariate GLMM with species correlations</td>
</tr>
<tr class="even">
<td><code>sfMsAbund()</code></td>
<td>Multivariate spatial GLMM with species correlations</td>
</tr>
<tr class="odd">
<td><code>svcMsAbund()</code></td>
<td>Multivariate spatially-varying coefficient GLMM with species
correlations</td>
</tr>
<tr class="even">
<td><code>ppcAbund()</code></td>
<td>Posterior predictive check using Bayesian p-values</td>
</tr>
<tr class="odd">
<td><code>waicAbund()</code></td>
<td>Calculate Widely Applicable Information Criterion (WAIC)</td>
</tr>
<tr class="even">
<td><code>simDS()</code></td>
<td>Simulate single-species distance sampling data</td>
</tr>
<tr class="odd">
<td><code>simMsDS()</code></td>
<td>Simulate multi-species distance sampling data</td>
</tr>
<tr class="even">
<td><code>simNMix()</code></td>
<td>Simulate single-species repeated count data</td>
</tr>
<tr class="odd">
<td><code>simMsNMix()</code></td>
<td>Simulate multi-species repeated count data</td>
</tr>
<tr class="even">
<td><code>simAbund()</code></td>
<td>Simulate single-species count data</td>
</tr>
<tr class="odd">
<td><code>simMsAbund()</code></td>
<td>Simulate multi-species count data</td>
</tr>
</tbody>
</table>
<p>All model fitting functions allow for Poisson and negative binomial
distributions for the abundance portion of the model. All GLM(M)s also
allow for Gaussian and zero-inflated Gaussian models. Note the
multi-species spatailly-varying coefficient models are only available
for Gaussian and zero-inflated Gaussian models.</p>
<h2 id="example-usage">Example usage</h2>
<h3 id="load-package-and-data">Load package and data</h3>
<p>To get started with <code>spAbundance</code> we load the package and
an example data set. We use data on 16 birds from the <a href="https://www.neonscience.org/field-sites/dsny">Disney Wilderness
Preserve</a> in Central Florida, USA, which is available in the
<code>spAbundance</code> package as the <code>neonDWP</code> object.
Here we will only work with one bird species, the Mourning Dove (MODO),
and so we subset the <code>neonDWP</code> object to only include this
species.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(spAbundance)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="co"># Set seed to get exact same results</span></span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">500</span>)</span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="fu">data</span>(neonDWP)</span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a>sp.names <span class="ot"><-</span> <span class="fu">dimnames</span>(neonDWP<span class="sc">$</span>y)[[<span class="dv">1</span>]]</span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a>dat.MODO <span class="ot"><-</span> neonDWP</span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a>dat.MODO<span class="sc">$</span>y <span class="ot"><-</span> dat.MODO<span class="sc">$</span>y[sp.names <span class="sc">==</span> <span class="st">"MODO"</span>, , ]</span></code></pre></div>
<h3 id="fit-a-spatial-hierarchical-distance-sampling-model-using-spds">Fit a
spatial hierarchical distance sampling model using
<code>spDS()</code></h3>
<p>Below we fit a single-species spatially-explicit hierarchical
distance sampling model to the MODO data using a Nearest Neighbor
Gaussian Process. We use the default priors and initial values for the
abundance (<code>beta</code>) and detection (<code>alpha</code>)
coefficients, the spatial variance (<code>sigma.sq</code>), the spatial
decay parameter (<code>phi</code>), the spatial random effects
(<code>w</code>), and the latent abundance values (<code>N</code>). We
also include an offset in <code>dat.MODO</code> to provide estimates of
density on a per hectare basis. We model abundance as a function of
local forest cover and grassland cover, along with a spatial random
intercept. We model detection probability as a function of linear and
quadratic day of survey and a linear effect of wind.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="co"># Specify model formulas</span></span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>MODO.abund.formula <span class="ot"><-</span> <span class="er">~</span> <span class="fu">scale</span>(forest) <span class="sc">+</span> <span class="fu">scale</span>(grass) </span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a>MODO.det.formula <span class="ot"><-</span> <span class="er">~</span> <span class="fu">scale</span>(day) <span class="sc">+</span> <span class="fu">I</span>(<span class="fu">scale</span>(day)<span class="sc">^</span><span class="dv">2</span>) <span class="sc">+</span> <span class="fu">scale</span>(wind)</span></code></pre></div>
<p>We run the model using an Adaptive MCMC sampler with a target
acceptance rate of 0.43. We run 3 chains of the model each for 20,000
iterations split into 800 batches each of length 25. For each chain, we
discard the first 10,000 iterations as burn-in and use a thinning rate
of 5 for a resulting 6,000 samples from the joint posterior. We fit the
model using 15 nearest neighbors and an exponential correlation
function. Run <code>?spDS</code> for more detailed information on all
function arguments.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="co"># Run the model (Approx run time: 1 min)</span></span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>out <span class="ot"><-</span> <span class="fu">spDS</span>(<span class="at">abund.formula =</span> MODO.abund.formula,</span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a> <span class="at">det.formula =</span> MODO.det.formula,</span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a> <span class="at">data =</span> dat.MODO, <span class="at">n.batch =</span> <span class="dv">800</span>, <span class="at">batch.length =</span> <span class="dv">25</span>,</span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a> <span class="at">accept.rate =</span> <span class="fl">0.43</span>, <span class="at">cov.model =</span> <span class="st">"exponential"</span>,</span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a> <span class="at">transect =</span> <span class="st">'point'</span>, <span class="at">det.func =</span> <span class="st">'halfnormal'</span>,</span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a> <span class="at">NNGP =</span> <span class="cn">TRUE</span>, <span class="at">n.neighbors =</span> <span class="dv">15</span>, <span class="at">n.burn =</span> <span class="dv">10000</span>,</span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a> <span class="at">n.thin =</span> <span class="dv">5</span>, <span class="at">n.chains =</span> <span class="dv">3</span>, <span class="at">verbose =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<p>This will produce a large output object, and you can use
<code>str(out)</code> to get an overview of what’s in there. Here we use
the <code>summary()</code> function to print a concise but informative
summary of the model fit.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">summary</span>(out)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> Call:</span></span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co">#> spDS(abund.formula = MODO.abund.formula, det.formula = MODO.det.formula, </span></span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="co">#> data = dat.MODO, cov.model = "exponential", NNGP = TRUE, </span></span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#> n.neighbors = 15, n.batch = 800, batch.length = 25, accept.rate = 0.43, </span></span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> transect = "point", det.func = "halfnormal", verbose = FALSE, </span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> n.burn = 10000, n.thin = 5, n.chains = 3)</span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#> Samples per Chain: 20000</span></span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> Burn-in: 10000</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> Thinning Rate: 5</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#> Number of Chains: 3</span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#> Total Posterior Samples: 6000</span></span>
<span id="cb6-15"><a href="#cb6-15" tabindex="-1"></a><span class="co">#> Run Time (min): 0.7582</span></span>
<span id="cb6-16"><a href="#cb6-16" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-17"><a href="#cb6-17" tabindex="-1"></a><span class="co">#> Abundance (log scale): </span></span>
<span id="cb6-18"><a href="#cb6-18" tabindex="-1"></a><span class="co">#> Mean SD 2.5% 50% 97.5% Rhat ESS</span></span>
<span id="cb6-19"><a href="#cb6-19" tabindex="-1"></a><span class="co">#> (Intercept) -1.8186 0.3428 -2.5560 -1.8020 -1.1956 1.0692 64</span></span>
<span id="cb6-20"><a href="#cb6-20" tabindex="-1"></a><span class="co">#> scale(forest) -0.1999 0.2056 -0.5818 -0.2102 0.2443 1.0292 160</span></span>
<span id="cb6-21"><a href="#cb6-21" tabindex="-1"></a><span class="co">#> scale(grass) 0.1206 0.1939 -0.2720 0.1244 0.4938 1.0210 229</span></span>
<span id="cb6-22"><a href="#cb6-22" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-23"><a href="#cb6-23" tabindex="-1"></a><span class="co">#> Detection (log scale): </span></span>
<span id="cb6-24"><a href="#cb6-24" tabindex="-1"></a><span class="co">#> Mean SD 2.5% 50% 97.5% Rhat ESS</span></span>
<span id="cb6-25"><a href="#cb6-25" tabindex="-1"></a><span class="co">#> (Intercept) -2.5392 0.1196 -2.7602 -2.5436 -2.2815 1.0850 204</span></span>
<span id="cb6-26"><a href="#cb6-26" tabindex="-1"></a><span class="co">#> scale(day) -0.1658 0.0807 -0.3380 -0.1629 -0.0187 1.0341 364</span></span>
<span id="cb6-27"><a href="#cb6-27" tabindex="-1"></a><span class="co">#> I(scale(day)^2) 0.0011 0.0828 -0.1530 -0.0011 0.1648 1.0391 352</span></span>
<span id="cb6-28"><a href="#cb6-28" tabindex="-1"></a><span class="co">#> scale(wind) -0.1352 0.0769 -0.2931 -0.1344 0.0126 1.0037 534</span></span>
<span id="cb6-29"><a href="#cb6-29" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb6-30"><a href="#cb6-30" tabindex="-1"></a><span class="co">#> Spatial Covariance: </span></span>
<span id="cb6-31"><a href="#cb6-31" tabindex="-1"></a><span class="co">#> Mean SD 2.5% 50% 97.5% Rhat ESS</span></span>
<span id="cb6-32"><a href="#cb6-32" tabindex="-1"></a><span class="co">#> sigma.sq 0.4941 0.2648 0.1725 0.431 1.1929 1.0156 169</span></span>
<span id="cb6-33"><a href="#cb6-33" tabindex="-1"></a><span class="co">#> phi 0.0016 0.0018 0.0003 0.001 0.0072 1.0644 102</span></span></code></pre></div>
<h3 id="posterior-predictive-check">Posterior predictive check</h3>
<p>The function <code>ppcAbund</code> performs a posterior predictive
check on the resulting list from the call to <code>spDS</code>. We
provide options to group, or bin, the data in different ways prior to
performing the posterior predictive check, which can help reveal
different types of inadequate model fit. Below we perform a posterior
predictive check on the data grouped by site with a Freeman-Tukey fit
statistic, and then use the <code>summary</code> function to summarize
the check with a Bayesian p-value.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>ppc.out <span class="ot"><-</span> <span class="fu">ppcAbund</span>(out, <span class="at">fit.stat =</span> <span class="st">'freeman-tukey'</span>, <span class="at">group =</span> <span class="dv">1</span>)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="fu">summary</span>(ppc.out)</span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> Call:</span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> ppcAbund(object = out, fit.stat = "freeman-tukey", group = 1)</span></span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#> Samples per Chain: 20000</span></span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#> Burn-in: 10000</span></span>
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#> Thinning Rate: 5</span></span>
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#> Number of Chains: 3</span></span>
<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a><span class="co">#> Total Posterior Samples: 6000</span></span>
<span id="cb7-12"><a href="#cb7-12" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-13"><a href="#cb7-13" tabindex="-1"></a><span class="co">#> Bayesian p-value: 0.535 </span></span>
<span id="cb7-14"><a href="#cb7-14" tabindex="-1"></a><span class="co">#> Fit statistic: freeman-tukey</span></span></code></pre></div>
<h3 id="model-selection-using-waic">Model selection using WAIC</h3>
<p>The <code>waicAbund</code> function computes the Widely Applicable
Information Criterion (WAIC) for use in model selection and
assessment.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">waicAbund</span>(out)</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co">#> N.max not specified. Setting upper index of integration of N to 10 plus</span></span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a><span class="co">#> the largest estimated abundance value at each site in object$N.samples</span></span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a><span class="co">#> elpd pD WAIC </span></span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a><span class="co">#> -167.74186 14.03248 363.54866</span></span></code></pre></div>
<h3 id="prediction">Prediction</h3>
<p>Prediction is possible using the <code>predict</code> function, a set
of covariates at the desired prediction locations, and the spatial
coordinates of the locations. The object <code>neonPredData</code>
contains percent forest cover and grassland cover across the Disney
Wildnerness Preserve. Below we predict MODO density across the preserve,
which is stored in the <code>out.pred</code> object.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="co"># First standardize elevation using mean and sd from fitted model</span></span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>forest.pred <span class="ot"><-</span> (neonPredData<span class="sc">$</span>forest <span class="sc">-</span> <span class="fu">mean</span>(dat.MODO<span class="sc">$</span>covs<span class="sc">$</span>forest)) <span class="sc">/</span></span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a> <span class="fu">sd</span>(dat.MODO<span class="sc">$</span>covs<span class="sc">$</span>forest)</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>grass.pred <span class="ot"><-</span> (neonPredData<span class="sc">$</span>grass <span class="sc">-</span> <span class="fu">mean</span>(dat.MODO<span class="sc">$</span>covs<span class="sc">$</span>grass)) <span class="sc">/</span></span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a> <span class="fu">sd</span>(dat.MODO<span class="sc">$</span>covs<span class="sc">$</span>grass)</span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a>X<span class="fl">.0</span> <span class="ot"><-</span> <span class="fu">cbind</span>(<span class="dv">1</span>, forest.pred, grass.pred)</span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="fu">colnames</span>(X<span class="fl">.0</span>) <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">'(Intercept)'</span>, <span class="st">'forest'</span>, <span class="st">'grass'</span>)</span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a>coords<span class="fl">.0</span> <span class="ot"><-</span> neonPredData[, <span class="fu">c</span>(<span class="st">'easting'</span>, <span class="st">'northing'</span>)]</span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a>out.pred <span class="ot"><-</span> <span class="fu">predict</span>(out, X<span class="fl">.0</span>, coords<span class="fl">.0</span>, <span class="at">verbose =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<h2 id="learn-more">Learn more</h2>
<p>The <code>vignette("distanceSampling")</code>,
<code>vignette("nMixtureModels")</code>, and
<code>vignette("glmm")</code> provide detailed descriptions and
tutorials of all hierarchical distance sampling models, N-mixture
models, and generalized linear mixed models in <code>spAbundance</code>,
respectively. Given the similarity in syntax to fitting occupancy models
in the <code>spOccupancy</code> package, much of the documentation on
the <a href="https://www.doserlab.com/files/spoccupancy-web/"><code>spOccupancy</code>
website</a> will also be helpful for fitting models in
<code>spAbundance</code>. Please also consider joining the <a href="https://groups.google.com/g/spocc-spabund-users"><code>spAbundance</code>
and <code>spOccupancy</code> users google group</a> to learn from others
who use the two packages.</p>
<h2 id="citing-spabundance">Citing <code>spAbundance</code></h2>
<p>Please cite <code>spAbundance</code> as:</p>
<p>Doser, J. W., Finley A. O., Kéry, M., & Zipkin E. F. (2024).
spAbundance: An R package for single-species and multi-species spatially
explicit abundance models, Methods in Ecology and Evolution. 15,
1024-1033. <a href="https://doi.org/10.1111/2041-210X.14332">https://doi.org/10.1111/2041-210X.14332</a>“)</p>
<h2 id="references">References</h2>
<p>Doser, J. W., Finley, A. O., Kéry, M., and Zipkin, E. F. (2022).
spOccupancy: An R package for single-species, multi-species, and
integrated spatial occupancy models. Methods in Ecology and Evolution,
13(8), 1670-1678. <a href="https://doi.org/10.1111/2041-210X.13897">https://doi.org/10.1111/2041-210X.13897</a>.</p>
</body>
</html>