forked from ritchieng/deep-learning-wizard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkdocs.yml
150 lines (138 loc) · 7.54 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Project information
site_name: 'Deep Learning Wizard'
site_description: 'Learn deep learning and deep reinforcement learning theories and code easily and quickly. Used by thousands of students and professionals from top tech companies and research institutions.'
site_author: 'Ritchie Ng'
site_url: 'https://www.deeplearningwizard.com/'
# Navigation
pages:
- Home: index.md
- About Us: about.md
- Reviews: review.md
- AI Pipeline: pipeline.md
- Consultancy: consultancy.md
- Deep Learning Tutorials (CPU/GPU):
- Introduction: deep_learning/intro.md
- Course Progression: deep_learning/course_progression.md
- Matrices: deep_learning/practical_pytorch/pytorch_matrices.md
- Gradients: deep_learning/practical_pytorch/pytorch_gradients.md
- Linear Regression: deep_learning/practical_pytorch/pytorch_linear_regression.md
- Logistic Regression: deep_learning/practical_pytorch/pytorch_logistic_regression.md
- Feedforward Neural Networks (FNN): deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork.md
- Convolutional Neural Networks (CNN): deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork.md
- Recurrent Neural Networks (RNN): deep_learning/practical_pytorch/pytorch_recurrent_neuralnetwork.md
- Long Short Term Memory Neural Networks (LSTM): deep_learning/practical_pytorch/pytorch_lstm_neuralnetwork.md
- Autoencoders (AE): deep_learning/practical_pytorch/pytorch_autoencoder.md
- Fully-connected Overcomplete Autoencoder (AE): deep_learning/practical_pytorch/pytorch_fc_overcomplete_ae.md
# - Fully-connected Undercomplete Autoencoder (AE): deep_learning/practical_pytorch/pytorch_fc_undercomplete_ae.md
# - Convolutional Overcomplete Variational Autoencoder (VAE): deep_learning/practical_pytorch/pytorch_autoencoder.md
# - Convolutional Overcomplete Adversarial Autoencoder (AAE): deep_learning/practical_pytorch/pytorch_autoencoder.md
# - Generative Adversarial Networks (GAN): deep_learning/practical_pytorch/pytorch_autoencoder.md
- Derivative, Gradient and Jacobian: deep_learning/boosting_models_pytorch/derivative_gradient_jacobian.md
- Forward- and Backward-propagation and Gradient Descent: deep_learning/boosting_models_pytorch/forwardpropagation_backpropagation_gradientdescent.md
- From Scratch Logistic Regression: deep_learning/boosting_models_pytorch/fromscratch_logistic_regression.md
- Learning Rate Scheduling: deep_learning/boosting_models_pytorch/lr_scheduling.md
- Optimization Algorithms: deep_learning/boosting_models_pytorch/optimizers.md
- Weight Initialization and Activation Functions: deep_learning/boosting_models_pytorch/weight_initialization_activation_functions.md
- Supervised Learning to Reinforcement Learning (RL): deep_learning/deep_reinforcement_learning_pytorch/supervised_to_rl.md
- Markov Decision Processes (MDP) and Bellman Equations: deep_learning/deep_reinforcement_learning_pytorch/bellman_mdp.md
- Dynamic Programming: deep_learning/deep_reinforcement_learning_pytorch/dynamic_programming_frozenlake.md
- Speed Optimization Basics Numba: deep_learning/production_pytorch/speed_optimization_basics_numba.md
- Additional Readings: deep_learning/readings.md
- Machine Learning Tutorials (CPU/GPU):
- Introduction: machine_learning/intro.md
- GPU DataFrames: machine_learning/gpu/rapids_cudf.md
- GPU/CPU Fractional Differencing: machine_learning/gpu/gpu_fractional_differencing.md
# - Linear Regression: machine_learning/gpu/rapids_cudf.md
# - Ridge Regression: machine_learning/gpu/rapids_cudf.md
# - Kalman Filter: machine_learning/gpu/rapids_cudf.md
# - Stochastic Gradient Descent: machine_learning/gpu/rapids_cudf.md
# - K-nearest Neighbours Classification: machine_learning/gpu/rapids_cudf.md
# - K-Means Clustering: machine_learning/gpu/rapids_cudf.md
# - Density-Based Spatial Clustering of Applications with Noise (DBSCAN): machine_learning/gpu/rapids_cudf.md
# - Singular Value Decomposition (SVD), Dimensionality Reduction: machine_learning/gpu/rapids_cudf.md
# - Principal Component Analysis (PCA), Dimensionality Reduction: machine_learning/gpu/rapids_cudf.md
# - Uniform Manifold Approximation and Projection (UMAP), Dimensionality Reduction: machine_learning/gpu/rapids_cudf.md
- Programming Tutorials:
- Introduction: programming/intro.md
- C++: programming/cpp/cpp.md
- Bash: programming/bash/bash.md
- Python: programming/python/python.md
- Javascript: programming/javascript/javascript.md
- Electron: programming/electron/electron.md
# - Matplotlib: programming/plotting/matplotlib.md
- Scalable Database Tutorials:
- Introduction: database/intro.md
- Cassandra Cluster Setup: database/setting_up_cluster.md
- News:
- Welcome: news/news.md
- Deep Learning Introduction, Defence and Science Technology Agency (DSTA) and NVIDIA, June 2019: news/defence_and_science_technology_agency_dsta_nvidia_talk_2016_06.md
- Oral Presentation for AI for Social Good Workshop ICML, June 2019: news/detect_waterbone_debris_ai_for_social_good_icml_2019_06.md
- IT Youth Leader of The Year 2019, March 2019: news/it_youth_leader_2019_03_11.md
- AMMI (AIMS) supported by Facebook and Google, November 2018: news/ammi_facebook_google_recap_2018_11_21.md
- NExT++ AI in Healthcare and Finance, Nanjing, November 2018: news/nanjing_next_nus_tsinghua_ai_finance_healthcare_2018_11_01.md
- Recap of Facebook PyTorch Developer Conference, San Francisco, September 2018: news/facebook_pytorch_devcon_recap_2018_10_02.md
- Facebook PyTorch Developer Conference, San Francisco, September 2018: news/facebook_pytorch_developer_conference_2018_09_05.md
- NUS-MIT-NUHS NVIDIA Image Recognition Workshop, Singapore, July 2018: news/nvidia_nus_mit_datathon_2018_07_05.md
- Featured on PyTorch Website 2018: news/deep_learning_wizard_1y_2018_06_01.md
- NVIDIA Self Driving Cars & Healthcare Talk, Singapore, June 2017: news/nvidia_self_driving_cars_talk_2017_06_21.md
- NVIDIA Inception Partner Status, Singapore, May 2017: news/deep_learning_wizard_nvidia_inception_2018_05_01.md
# Configuration
theme:
name: 'material'
custom_dir: 'theme'
language: 'en'
feature:
tabs: true
logo:
icon: 'whatshot'
palette:
primary: 'teal'
accent: 'teal'
font:
text: 'Roboto'
code: 'Roboto Mono'
favicon: './docs/assets/favicon.ico'
# Extensions
markdown_extensions:
- admonition
- codehilite:
linenums: false
- footnotes
- meta
- toc:
permalink: true
- pymdownx.arithmatex
- pymdownx.betterem:
smart_enable: all
- pymdownx.caret
- pymdownx.critic
- pymdownx.details
- pymdownx.emoji:
emoji_generator: !!python/name:pymdownx.emoji.to_svg
- pymdownx.inlinehilite
- pymdownx.magiclink
- pymdownx.mark
- pymdownx.smartsymbols
- pymdownx.superfences
- pymdownx.tasklist:
custom_checkbox: true
- pymdownx.tilde
# Equations
extra_javascript:
- 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML'
# Social
extra:
social:
- type: 'github'
link: 'https://github.com/ritchieng'
- type: 'facebook'
link: 'https://www.facebook.com/DeepLearningWizard/'
- type: 'linkedin'
link: 'https://www.linkedin.com/company/deeplearningwizard/'
disqus: 'deep-learning-wizard'
# Google Analytics
google_analytics:
- 'UA-122083328-1'
- 'auto'
# Copyright
copyright: 'Copyright © 2019 Deep Learning Wizard'